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Overview

e The problem: olfactory coding
* The Lempel-Ziv-distance between spike trains

» Neuronal clustering in the olfactory system:
- Experimental procedure
- Data analysis
- Results

* An explanatory framework

* Open questions
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Olfaction

Odor is a chemical sense, differing from senses
which process physical input (photon density / air
pressure / particle velocity).
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A major distinction is the synthetic property of
olfaction: the ability to assign a specific identity sensor
to a great number of component mixtures. O O i

Olfactory computation refers to the problem of -
how specific ordors lead to a specific activation
of the output neurons (mitral cells) given the
boundary condition of neuronal connectivity in
the olfactory bulb.
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Odor encoding by neuronal clusters

Understanding olfactory coding requires the analysis of functional
clustering within a neuronal network of an olfactory sensor when
confronted by a specific odour.

The most frequently applied criterion determining membership of a
specific neuron to such a cluster is whether the activity of that
neuron is synchronised with the other neurons in the cluster:

- Support in invertebrates (e.g. bees)

- Unclear situation in vertebrates

- Is synchronization the correct marker of a computation?

- How is synchronized activity decoded by higher areas?

We address this question using alternative criteria for neuronal
population identification based on the Lempel-Ziv distance (LZ-
distance) of spike trains and the sequential superparamagnetic
clustering paradigm.
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Spike train distance measures

The empirical determination of neuronal clusters requires:

- A measure (distance) defining the ,closeness* within a cluster
(we compare the LZ-distance with the C-distance (coincident firing))
- A clustering algorithm (unbiased).
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The Lempel-Ziv-distance (1)

Definition 1 For a bitstring X,,, the Lempel-Ziv-complexity
WX, ) of X, s

.-1_}'{,.. | |-J_;r-|j}{r, |

P

WX,

where of X, ) s the mumber of phrases that results from the

.|!r. .-"'.f‘l'.'ll-'lf-lll.':.ll.r_'.f ”.IIl '}::"” .

Definition 2 For two bitstrings Xy, and Y, of equal lengih,
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Clustering: T. Ott / N. Stoop: SS18, 27.06., 08.00-10.00
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The Lempel-Ziv-distance (2)

Assuime two strings X,,. Y, of equal length n which are LZ-coded such that Py
and Py are the sets of phrases one obtains,

The amonnt of information ¥, ]II'“"-'i'lc-:-'.:l]J-ﬂll K 18 given as I (X, | — Jr'i-'lk{ulx'fw 1
where of X, | Y, ) 18 the size of the difference set F’;{I__ F’*-fl_..

[f Y, provides no information about X5, then the sets Py and Py are dizjoint,
ancd WX, ) — KX, Y, ) =0 ItY,, provides complete information about X, then
Fu, ' Py, = Wand (X, ) — K0, Y, ) = 0K, ).

The Lé-complexity approximates the Kolmogorov complexity O (X, ) of a bit-
string, such that CylX, ) — Ck I:}{InllTIi'.' b2 O I:.\TJI.':I — Ux I:."fi'.'lxi'.' . In ]'T"“'li*ﬂl
applications with bitstrings of finite length, however, we have to ealenlate K (X, ) —
WX Yol / WiXg) as well as K{Y,) — K (Y, Xn) /WY, ) and we take the minimmm

i order to ensure rllll:xi'.'-}:.'l.':l = ) for n = m.
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The Lempel-Ziv-distance (3)

Definition: A measure d{ X, Vi) of the strings X, Ve, 21 is ealled a distance,

if it falfills the following distanee axioms:

al AN, Y =0 for X, #Y,

3 d XN Xyl =10

ol AN Yo = diV,.. X

dy diX,.Y,)=diX,.Z)+d7Z.Y,,)

d{ Ne Yo ) | — |||i||{h (An) R I'l”””] KYn) — &K I:}I'lln .I} (]

KX, ' K(Yq)

Theorem: The LZ-distance fulfills the distance axioms.

Proof: It follows straightforward from (17, (2) and (3. that the LZ-distance
fulfills the conditions a). b} and ) of the definition of a distance measure. It
remains to prove, that (3) satishes condition d) (triangle meqnalitv). We will
show. that we can insert (3) into condition d) and transform the iII"I||I'rl|il_'-.' such
that it will be true for all possible choices for X, Y, and Z,,.

Withont loss of f_'_"II'.'I':-I.li|.".'. A=sIe 2 = L, r-[_";',J [ r-[}',,]. and henee |_|]
KX, = K(Y,) The ollowng three eases melude all possible relations of
el A1 towards of X)) and (Y, 00 1) ol &) = ol X0 UL ol X)) = () = oY)
and I oY) = ofZ). Now we prove the claim of onr theorem for each case
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Notation: We express the sizes of the sets Py, . Py, and Py as follows:
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where a.. ... ¢ = 0 indicate the number of elements in the subsets, as illustrated

n ["i'_',. . Note, that ]"i'_',. [ illustrates only the most oe ral ease. It is |Ju'~:~'i|\\~u

that some subsets contain no elements

a
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Experimental Procedure

Neuronal activity of anaesthetised rats was sampled by means of
a electrode array positioned in the olfactory bulb (30 electrodes).

The activity was sampled in the 10s period before odor onset
(pre) and the 10s period of odor presentation (during).

Individual neurons were discriminated from multiple neuron
activity using a Kohonen network to cluster principle components
derived from the action potential waveforms allowing discrimi-
nation of activity from 1-6 neurons at each active site.

Data: - 40-54 neurons in total obtained in two animals
- 40 ,pre-stimulus” spike trains per neuron.
- 40 ,during-stimulus” spike trains per neuron.
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Data analysis (1)

The analysis has been performed in a three-step procedure:

1) The number of clusters of neurons in each of the 40

2)

periods of recording (pre and during), using both the LZ-
distance and the C-distance, was determined.

To quantify the mean interactions of each neuron with
each other neuron in the during-stimulus period compared to
the pre-stimulus period, we assigned to each neuron a vector
N. = (X;, ..., X;p), Whose components indicate the number of
times the specified neuron finds itself in a cluster with
another neuron. By using the normalized dot product for each
pair N; and N; we obtain the distance matrix D. Clustering
with this distance measure provides “clusters among
partners”, the degree of interrelation of neurons within the
network, averaged over all trials.
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Data analysis (2)

3) We identify those neurons that remain in the same “cluster
among partners” for both pre and during stimulus (almost all
neurons keep their partners). For each group identified in this
way we reduce D as follows (example):
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+f ¢ !
rsyq I32 T33 T34 T35 T3ze T3r7 Tzsg T390 —'n"z = |rz2.I2,3,72,7)
J'_-L] .-!'._1‘3 413 ,1'414 .t'4‘5 a6 J'_—L*,- .c'4‘3 Ian _-'1";;, — |:-'!I3 9. 11'3 - .-!'3 - \
D=| r51 *52 53 Ts4 I55 Tss I57 L5y L9 3 s ' o
, . . , . . , . . Ni = (r72.073,07,7)
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. . - - . - - . . " i b T T 3
Ts1 Ts2 Ts3 T4 Tss Tae 87 Tss T8 Scinster = Mean(||Ns||, | Na|l. || N+]])

kJ'L-'I,] rga Loz Tog4 Los Tog Tor Log -f'g.g)

This is performed for both the pre and during stimulus condition.
We receive in this way the stability of each cluster in either
condition.



the stoop group ini|uni | eth | zirich

Results (1)

We find that the number of clusters emerging on stimulus presentation
does not per se indicate whether the network is in a pre stimulus or a
during stimulus condition, using both distance measures for clustering
(special case: animal B using the C-distance).
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Results (2)

But if the mean behavior of the
network is investigated, we find
clear differences between pre
and during stimulus for some
clusters: stabilization and de-
stabilisation effects.

Both stabilization and de-
stabilisation effects are more
pronounced in the LZ-paradigm
compared to the C-paradigm.

a)
1
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Animal A, LZ-distance paradigm

|
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12) 2(4) 3(4) 42) 5(4) 6(7) 7(24)
cluster number (cluster size)

Animal A, C-distance paradigm
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Animal B, LZ-distance paradigm
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Interpretation of the result

We find that — using both distance measures — neurons tend to be In
the same clusters independent of the presence or absence of an odor,
presumably reflecting the underlying neuronal connectivity that
remains unchanged during short timescales.

However, the stability of some clusters measured in the Lempel-Ziv
paradigm changes significantly when an odor is presented to the
olfactory neuronal network — an effect that is much less present in the
synchronization paradigm. This functional change presumably reflects
neuronal computations performed by the neurons due to odor
presentation, reflected by changes in neuronal pattern firing.

This indicates that neuronal clustering using the Lempel-Ziv distance
may be a better approach to understand the computation performed in
an olfactory neuronal network compared to synchronization.
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A possible explanation

The generic scheme of the ,Stoop-
model* of neuronal computation:

Mitral cell

Drl'\-'ll'l';l current "I-' To lateral olfa CLOry ac! s—

- In a quasi-stationary state, most
neurons show limit-cycle behavior. -—:\\\ ///:
~ -
- Coupling of limit cycles leads to the Driving current ]
phenomenon of locking: currents ___\\\ ///,__
are encoded in firing-periodicities. N < —
Ay ";_
- The neuroanatomy in the olfactory L N le N
bulb is consistent with this scheme. X X, N TrpeTuBad reCan

perturbation

- Similar inputs lead to groups of X,
neurons with similar (but not ne- | t'm_ ||
. parturoing neuron
cessarily synchronous) patterns.

- Spontaneous activity (pre-stimulus) 1l |l 1]
would lead to less stable firing patterns. fring-periodicity
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Problems and open questions

The following shortfalls and problems should be considered:
1) Isthe spike sorting good enough?

2) In data obtained by multi-electrode array recordings, there is a
bilas against synchronous firing, as coincident spikes are
not distinguished. This may affect the C-distance-analysis.

3) What is the effect of the neuronal clusters detected in the LZ-
paradigm on higher areas along the olfactory information
pathway?
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