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Overview

* The problem context: the Stoop hypothesis
e The Lempel-Ziv-distance between spike trains
* Neuronal clustering in the olfactory system

* Neuronal firing reliability in the visual system
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Stoop hypothesis: the generic scheme

Main points of our model of neural
computation (Stoop et. al, various
publications):

- In a quasi-stationary state, most
neurons show limit-cycle behavior.

- Coupling of limit cycles leads to the
phenomenon of locking (a generic
phenomenon: Huygens!)

- In this way, currents are encoded
In periodicities of firing (A/D
converter, Huffman-optimal)
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Neuronal noise In the In vivo condition

In the in vivo condition, various noise
sources affect the ,ideal” limit cycle
firing of a neuron:

1) Changing background activity.
2) Input delay variability.

3) Several variants of synaptic noise
(spontaneous release, varying
number / size of vesicles etc.)

4) Several variants of membrane

noise (channel noise, thermal P
effects, lesions etc.) —

- I\'t._\ 5 ;r'

5) Several variants of conductance N

variability (axonal branching etc.)
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Stoop-Hypothesis:

In several publications (Stoop et al), it has
been shown that:

- There are three different classes of
neuronal firing.

- The Arnold tongue structure is found in
vitro.

- In model studies, periodicity is preserved
for nonconstant driving.

There is also experimental support for two
classes of synapses (weak/strong).

(Stoop et al, 2000)
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experimental support
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Stoop-hypothesis: the network

The model integrates several aspects that are recently discussed in
neural coding theories:

- The concepts of rate

coding and temporal Y_F y_F [
coding are unified. T T
- ,Noise* has a functional
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- Coincidence firing
may serve as a strong

perturbation signal.

- LTP/LTD changes input
current.
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Stoop hypothesis: predictions

Two predictions are of interest for us:

1) We expect different groups of neurons in terms of their firing
patterns. We expect a ,stabilization-effect” when stimuli are
presented. This is a clustering problem:

- We need a nonparametric clustering algorighm
- We need an appropriate distance measure

2) We expect different types of reliability on different stages of
neuronal information flow: Reliability of information transmis-
sion vs. reliability of information processing:

- We need a distance measure for timing and for patterns.

= Our solution: The Lempel-Ziv-distance

The first prediction will be investigated in the olfactory system, the
second prediction in the visual information processing pathway.
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Spike train distance measures
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The Lempel-Ziv-distance (1)
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Definition 1 For a bitstring X, the Lempel-Ziv-complexity
WX of X, s
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where o X, ) is the number of phrases that resulis from the
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LZ-coding: The bitstring is sequentially parsed such that the new phrase is not contained in the
set of phrases generated so far (the coding proposed in Ziv/ILempel 1978).
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The Lempel-Ziv-distance (2)

Definition 2 For two bitstrings X, and Y, of equal lenoth,
the f_r.'.r'-'n';“c"."'-f."'l ~distance d| ;’fu. 1,?,;“ (AN

i X, Y
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K(X]Y) is obtained by calculating the difference set P, \ P, (P,: the set of phrases that results
from a LZ-coding of X).

The denominator K(X) serves as a normalization factor such that 0 < d(X,Y) < 1.

For Kolmogorov-complexity we have C,(X) — C (X]Y) = C(Y) — C,(Y|X). But if we approximale
C, with the LZ-complexity for finite strings, we take the minimal value to ensure d(X_,Y_) > 0 for
m #n.
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Clustering with the LZ-distance (1)
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Clustering with the LZ-distance (2)
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Aplication 1: The olfactory system

Odor is a chemical sense, differing from
senses which process physical input (photon
density / air pressure / particle velocity).

A major distinction is the synthetic property of
olfaction: the ability to assign a specific iden-
tity to a great number of component mixtures.

It is assumed that odor identity is encoded in
the activity of many cells in the output neurons
of the olfactory system (mitral cells).

Olfactory coding is a typical example of a
population code.
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Stabllization, not synchronization

Understanding olfactory coding requires the analysis of functional clustering within a neuronal
network of an olfactory sensor.

If we apply clustering using the LZ-distance in multi array recor-dings in the olfactory bulb of
rats (54 neurons, 48 spike trains recorded before and 48 spike trains during odor presenta-
tion), we find the following mean behavior of the network:
- The change in cluster stability signals odor presentation
- This effect is much less present when synchronization
determines cluster identity.
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Application 2: The visual system
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Palmer, Stephen E., (1999). Vision Understanding the Brain in the 21st
science: Photons to phenomenology. Century, by Max R. Bennett with illustrations

Cambridge, MA: The MIT Press by Gillian Bennett
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What Is firing reliability?
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The Poisson process serves as reference for reliability: For a given rate, the mean of the
pairwise distance of spike trains is calculated and approximated by a function. The deviation
of real data from this function is our measure of reliability.
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Firing reliability along the visual pathway
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Results: Expectations confirmed

- We find that stable clusters measured in the LZ-paradigm signal odor
presentation. In the context of the Stoop hypothesis, these clusters may
serve as ,processing units“ and the stabilization effect indicates that
indeed firing patterns measured in the LZ-paradigm stabilize.

- We find four classes of reliability: High for timing and pattern (LGN), low
for timing and pattern (V1 complex), high for timing and low for pattern
(V1 simple) and high for pattern and low for timing (MT). This reflects
our expectations concerning information transmission reliability and
computation reliability.
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