NOLTA 2004 – Fukuoka, Japan

Spike train clustering using a Lempel-Ziv-distance measure

Markus Christen, Thomas Ott, Ruedi Stoop Institute of Neuroinformatics, Uni/ETH Zurich

Collaborators:

Adam Kohn, New York University Alister Nicol, Babraham Institute Cambridge

Contents:

The problem: - Multi-electrode array recordings.

- Standard distance measures.
- Application of distance measures.
- **LZ-distance:** LZ parsing procedures
 - LZ-complexity
 - LZ-distance
- **Assessment:** Choosing the parsing
 - Clustering
 - Comparison with other distances
- **Application:** Example 1
 - Example 2

Conclusions

Multi-electrode array recordings:

Multi-electrode array recordings allow to measure many neurons simultaneously.

How to group neurons with similar temporal structure irrespective of the way the patterns are distributed?

Applications of distance measures:

Reliability-discussion: A measure for estimating the variability of neuronal firing:

 \rightarrow Distance of trains of different trials.

Spike-pattern recognition: An instrument to evaluate null-hypotheses in shuffling techniques:

 \rightarrow Distance original train vs. shuffled train.

Neuronal modelling: A tool for evaluating the accuracy of neuronal models:

 \rightarrow Distance of measured train vs. model train.

Multi-train analysis: A prerequisite for spike train clustering:

 \rightarrow Distance matrix.

Standard distance measures:

LZ parsing procedures:

LZ complexity:

Information theory: Distinct parsings of bitstrings X_n , which are the result of stationary, ergodic processes with entropy rate *H* have the property of asymptotic optimality:

$$K(X_n) = \text{limsup}_{n \to \infty} c(X_n) * \log c(X_n) / n \to H$$

where $c(X_n)$ is the size of P_{Xn} .

 $K(X_n)$ is the Lempel-Zif-complexity of the string X_n .

 $K(X_n)$ can be used to calculate the entropy rate of a spike train (problem: stationarity!).

LZ distance:

Basic idea: Let X, Y be two bitstrings of equal length. The distance should tell us, to what extend the parsing of Y helps to parse X. We define:

$$d(X,Y) = 1 - \min\left\{\frac{K(X) - K(X|Y)}{K(X)}, \frac{K(Y) - K(Y|X)}{K(Y)}\right\}$$

To calculate K(X|Y), the size of the difference set $P_X \setminus P_Y$ (= c(X|Y)) is used. d(X,Y) fulfills the distance axioms.

If Y provides no information about X, then $P_X \setminus P_Y = P_X$ and the distance is 1.

If Y provides complete information about X, then $P_X \setminus P_Y = \emptyset$ and the distance is 0.

Choosing the parsing:

LZ-76 parsing converges faster.

LZ-78 parsing is more noise-robust and computationally much cheaper \implies we use LZ-78 parsing.

Clustering:

- - 5 Testtrains (all with similar firing rate):
 - I: Homogenous Poisson with abs. & rel. refractory period.
 - II: Inhomogenous Poisson driven like V1 simple cell.
 - III: Noisy burst pattern train.
 - IV: Complex cell V1.
 - V: Simple cell V1, sinusoidally driven.

All tested distances lead to comparable results.

Distance measures allow to assess the accurracy of models.

Comparison with other distances:

Fife different spike patterns embedded in a random (Poisson) background such that the firing rates of the spike trains are similar.

LZ-distance allows classification, correlationbased distances do not (histogram: tescaling would not help).

Example 1:

	before randomization	after randomization
uniform background	time time	I III III III Trae
Hom. Poisson background	II I	time
Inhom. Poisson background	fine	firing
ISI shuffled background	time	III time
spike jittered background	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	II II II II II time
spike shuffled background	neuron number 1 2 3 4 4 bin size	neuron number 1 2 3 4 bin size
spike count match background	neuron number 1 2 4 4 4 bin size	neuron number 1 2 3 4

Example 2:

64 neurons in the olfactory bulb of the rat, before (a) and during (b) stimulus presentation:

Conclusions:

LZ distance has the following properties:

- It needs a minimum number of parameters (bin-size for bitstring-generation).
- It is easy to implement and computationally cheap.
- It fullfills the mathematical requirements for a distance measure.
- It performs at least as good as other distance measures in standard spike train clustering problems.
- It allows to cluster spike trains with siminar, but randomly distributed patterns.