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Abstract. Since the principles of biological information transfer have re-
mained elusive, for the comparison of spike-trains, several concurring measures
are in use. It is, however, rarely verified whether any of these measures satisfy
the axioms of a metric. In this contribution, we prove that a recent Lempel-
Ziv-complexity based spike-train distance measure indeed satisfies the axioms
of a metric.

1. Introduction. Biological neurons communicate by means of electrical pulses,
called spikes. The exact way of how information is encoded in the emitted sequences
of spikes called spike trains, however, has remained elusive. It has become clear,
however, that the form of a spike train reflects the nature of the information to
be transmitted, and the conditions under which it has been generated, i.e. the
architecture of the involved neuronal circuitry alike.

The discipline of the analysis of the nature and the functions of the spike train
signals recorded from ensembles of neurons is usually termed spike train analysis.
One major focus of spike train analysis is the classification of a whole ensemble
of neurons (usually recorded by means of an array of electrodes) into classes of
similar firing, which may provide information about the functional connectivity of
a probed neuronal network. To solve this problem, a variety of distance measures
[1, 5, 6, 8, 10, 11, 12, 14, 15] have been used, usually in combination with some
clustering procedure. The solutions offered, however, generally suffer from very
basic shortcomings: First, it is unknown which of these measures should be con-
sidered relevant (since the nature of the neuronal information is still unknown).
Second, and related to the first point, most of them introduce a strong bias in the
form of predefined analysis parameters. Lastly, it is usually not shown whether the
measures used are a metrics in the mathematical sense. This is not only dissatisfy-
ing from a theoretical point of view. It might also have practical consequences, as
algorithmically, the triangle inequality – which is the essential step to be mastered
in such a proof – is the key tool for the clustering of very similar data into subsets
[2].

The optimal spike-train analysis therefore consists of two steps that should be as
much independendent from any form of predefined notions of encoding and trans-
mission of information among neurons: An unbiased measure of similarity, and an
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unbiased clustering procedure. Whereas for the first problem, we have already ar-
rived at a satisfactory solution [?, ?], for the second problem we have only recently
proposed a spike train distance measure that is entirely based on fundamental no-
tions of information theory. Our Lempel-Ziv-complexity [7] distance measure [3]
does not require the choice of arbitrary analysis parameters, is easy to implement,
and computationally cheap. The Lempel-Ziv-distance (LZ-distance) considers spike
trains with similar but possibly delayed firing patterns as close and is therefore
considerably noise-robust – which are important aspects to be taken care of when
applying distance measures to biological data. In this contribution, we show that
the LZ-distance also satisfies the axioms of a metric.

2. The Lempel-Zif-Distance. For our analysis, spike trains given as sequences
of neuronal spike-times t = {t1, . . . , tn} are translated into bitstrings. For this
translation, the time interval [0, T ] accross which the measurement is taken is par-
titioned into n bins of width Δτ (nΔτ = T ). If at least one spike falls into the i-th
bin, the letter “1” (and otherwise the letter “0”) is written to the i-th position of
the string. Usually, Δτ is chosen so that maximally one spike falls into one bin.
This is achieved by setting Δτ ∼ 1 ms, because of the neuronal refractory period.
The resulting bitstring is denoted by Xn. A substring starting at position i and
ending at position j will be denoted by Xn(i, j). Such bitstrings can be viewed as
generated by an information source. For this source, we want to find the optimal
coding [4, 13]. Such a coding is provided by a parsing that partitions the string into
non-overlapping substrings called phrases. The set of phrases [4] that result from a
parsing of a bitstring Xn is denoted by PXn

. We will use a coding that sequentially
parses the original string so that the new phrase is not yet contained in the set of
phrases generated so far [16]. This henceforth termed LZ-coding can be defined as
follows:

Definition 2.1. Let c(Xn) denote the number of phrases that results from the LZ-
coding of a file Xn. For a bitstring Xn, the Lempel-Ziv-complexity[16] K(Xn) of
Xn is defined as

K(Xn) =
c(Xn) log c(Xn)

n
.

To explain the LZ-distance, we start from two strings Xn, Yn of equal length
n. From the perspective of LZ-complexity, the amount of information Yn provides
about Xn is given as K(Xn)−K(Xn|Yn), where c(Xn|Yn) is the size of the difference
set PXn

\PYn
. If Yn provides no information about Xn, then the sets PXn

and PYn
are

disjoint, and K(Xn) − K(Xn|Yn) = 0. If Yn provides complete information about
Xn, then PXn

\ PYn
= ∅ and K(Xn) − K(Xn|Yn) = K(Xn). The LZ-complexity

approximates the Kolmogorov complexity KK(Xn) of a bitstring and a theorem
of the complexity theory by Kolmogorov implies that KK(Xn) − KK(Xn|Yn) ≈
KK(Yn)−KK(Yn|Xn) [9]. In practical applications, where we deal with bitstrings
of finite length, this symmetry does not hold. Therefore, we need to calculate
K(Xn)−K(Xn|Yn)/K(Xn) as well as K(Yn)−K(Yn|Xn)/K(Yn), where we take the
minimum in order to ensure d(Xn, Xm) > 0 for n �= m. Furthermore, the expression
K(Xn) − K(Xn|Yn) is normalized by K(Xn) (and by K(Yn), respectively) so that
the distance d(Xn, Yn) ranges between 0 and 1. This leads to the following definition
of the LZ-distance:
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Figure 1. Coding used for the subsets for set of phrases obtained for

the strings Xn, Yn, Zn.

Definition 2.2. For two bitstrings of equal length Xn and Yn, the Lempel-Ziv
distance [3] d(Xn, Yn) is defined by

d(Xn, Yn) = 1 − min
{

K(Xn) − K(Xn|Yn)
K(Xn)

,
K(Yn) − K(Yn|Xn)

K(Yn)

}
.

3. The LZ-distance is a metric. We now prove that the LZ-distance is a metric.
I.e., for strings Xn, Yn, Zn, d(·, ·) satisfies the following axioms:

a) d(Xn, Yn) > 0 for Xn �= Yn

b) d(Xn, Xn) = 0
c) d(Xn, Yn) = d(Yn, Xn)
d) d(Xn, Yn) ≤ d(Xn, Zn) + d(Zn, Yn)

For the proof, we will need two Lemma, and, in order to simplify the arguments,
the following general shorthand coding for the set of phrases PXn

, PYn
, PZn

, resulting
from the parsing of the strings Xn, Yn, Zn (see Fig. 1):

c(Xn) = a + d + f + g, c(Xn|Yn) = a + f, c(Yn|Xn) = b + e

c(Yn) = b + d + e + g, c(Xn|Zn) = a + d, c(Yn|Zn) = b + d

c(Zn) = c + e + f + g, c(Zn|Yn) = c + f, c(Zn|Xn) = c + e.

Lemma 3.1. Consider the function f(x) = x log x and x ∈ N0. It follows:

f(x) ≤ f(y) + f(z), y ∧ z �= 0 ⇒ x ≤ y + z.

Proof: Proof by contradiction. We assume x > y+z and transform this equation
as follows:

xx > xy+z = xyxz
x>y,x>z

> yyzz.

But this would be inconsistent with the following transformation of the left hand
side of the lemma, where we use the fact that f(x) is monotonically increasing in
N0:

x log x ≤ y log y + z log z ⇒ ex log x ≤ ey log y+z log z ⇒ xx ≤ yyzz.

Thus, the lemma is correct. Observe that the lemma does not hold on R
+
0 .

Lemma 3.2. Assume that K(Xn) ≥ K(Yn). Then it follows that

K(Xn) − K(Xn|Yn)
K(Xn)

≤ K(Yn) − K(Yn|Xn)
K(Yn)

.
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Proof: We define x1 := a + f , x2 := b + e and x3 := d + g. Using Lemma 3.1,
we obtain

K(Xn) ≥ K(Yn) ⇒ x1 + x3 ≥ x2 + x3 ⇒ x1 ≥ xx.

Using the assumption of the lemma and the fact, that K(Xn) is monotonically
increasing in N0, we transform the righthand side to

K(Xn)−K(Xn|Yn)
K(Xn) ≤ K(Yn)−K(Yn|Xn)

K(Yn) ,

K(Xn|Yn)
K(Xn) ≥ K(Yn|Xn)

K(Yn) ,

K(Xn|Yn) ≥ K(Yn|Xn),
x1 ≥ x2.

That axioms a), b) and c) of a metric are fulfilled follows straightforwardly from
Def. 2.2. It remains to prove that the triangle inequality d) holds as well. To this
end, we show that we can insert Def. 2.2 into axiom d) and then transform the
inequality so that it will be true for all possible choices for Xn, Yn and Zn. Without
loss of generality, we may assume n > 0, c(Xn) ≥ c(Yn), and hence (as K(Xn)
is monotonically increasing in N0), K(Xn) ≥ K(Yn). The following three cases
cover all possible relations of c(Zn) with c(Xn) and with c(Yn): I) c(Z) ≥ c(X), II)
c(X) ≥ c(Z) ≥ c(Y) and III) c(Y) ≥ c(Z). We will consider each case separately.

Proof of case I: We have to prove that d(Xn, Yn) ≤ d(Xn, Zn) + d(Zn, Yn) un-
der the assumption c(Zn) ≥ c(Xn). Using Def. 2.2 and Lemma 3.2, we transform
the triangle inequality into

K(Zn)
K(Xn|Yn)

K(Xn)
≤ K(Zn|Xn) + K(Zn|Yn),

where 0 ≤ K(Xn|Yn)
K(Xn) ≤ 1, because 0 ≤ c(Xn|Yn) ≤ c(Xn). We now assume the

most difficult extral case K(Xn|Yn)
K(Xn) = 1 and apply Lemma 3.1, which gives us

c(Zn) ≤ c(Zn|Xn) + c(Zn|Yn).

Using our shorthand-coding, this translates into

c + e + f + g ≤ (c + e) + (c + f),
g ≤ c,

which is correct under the assumption K(Xn|Yn)
K(Xn) = 1, because from K(Xn|Yn) =

K(Xn) it follows that PXn
∩ PYn

= ∅ and thus g = 0. This concludes the proof of
case I.

Proof of case II: We have to prove that d(Xn, Yn) ≤ d(Xn, Zn)+d(Zn, Yn), under the
assumption c(Xn) ≥ c(Zn) ≥ c(Yn). Using Def. 2.2 and Lemma 3.2, we transform
the triangle inequality into

K(Zn)
K(Xn)

(K(Xn|Yn) − K(Xn|Zn)) ≤ K(Zn|Yn),

where 0 ≤ K(Zn)
K(Xn) ≤ 1, if c(Xn) ≥ c(Zn). We again consider the extremal case

K(Zn)
K(Xn) = 1 and apply Lemma 3.1, which yields

c(Xn|Yn) − c(Xn|Zn) ≤ c(Zn|Yn).
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Using our shorthand-coding, this transforms into

(a + f) − (a + d) ≤ (c + f)
0 ≤ c + d,

which is correct for all choices of {c, d}. This concludes the proof of case II.

Proof of case III: We have to prove that d(Xn, Yn) ≤ d(Xn, Zn) + d(Zn, Yn) under
the assumption c(Yn) ≥ c(Zn). Using Def. 2.2 and Lemma 3.2, we transform the
triangle inequality into

K(Yn)
K(Xn)

(K(Xn|Yn) − K(Xn|Zn)) ≤ K(Yn|Zn),

where 0 ≤ K(Yn)
K(Xn) ≤ 1, for c(Xn) ≥ c(Yn). Again, we consider K(Yn)

K(Xn) = 1 and
apply Lemma 3.1, which yields

c(Xn|Yn) − c(Xn|Zn) ≤ c(Yn|Zn).

Using our shorthand-coding, this transforms into

(a + f) − (a + d) ≤ b + d,

c + e + f + g ≤ b + c + 2d + e + g,

c(Zn) ≤ c(Yn) + c + d,

which holds since c(Yn) ≥ c(Zn). This concludes the proof of case III. Thus, the
LZ-distance fulfills all the axioms required for a metric.
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