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Research in neuroscience traditionally relies on rather small groups that deal with different questions on all levels of neuronal
organization. Recent funding initiatives—notably the European “Human Brain Project” (HBP)—aim to promote Big
Neuroscience for integrating research and unifying knowledge. This approach is characterized by two aspects: first, by many
interacting researchers from various disciplines that deal with heterogeneous data and are accountable to a large public funding
source; and second, by a decisive role of information and communication technology (ICT) as an instrument not only to
perform but also to structure and guide scientific activities, for example, through simulations in the case of the HBP. We argue
that Big Neuroscience comes along with specific ethical challenges. By examining the justification of Big Neuroscience and the
role and effects of ICT on social interaction of researchers and knowledge production, we provide suggestions to address these
challenges.

Keywords: Big Neuroscience, brain simulation, ethics in organizations, Human Brain Project, knowledge production,
neuroethics

In January 2013, the Human Brain Project (HBP) was
announced as one of two flagship projects funded by the
European Commission’s Future and Emerging Technolo-
gies Programme (FET). The matched funding for the HBP
of about 1.16 billion Euros over 10 years provided by the
European Union (EU) and partner shall enable a concerted
effort to “lay the technical foundations for a new model of
ICT-based brain research, driving integration between
data and knowledge from different disciplines, and cata-
lyzing a community effort to achieve a new understanding
of the brain, new treatments for brain disease and new
brain-like computing technologies” (HBP Report 2012, 3).
Only a few weeks later, U.S. President Barack Obama
announced the “Brain Research through Advancing Inno-
vative Neurotechnologies (BRAIN) Initiative” in the
United States, aiming to invest several billion dollars to
examine the workings of the human brain (Markoff 2013).
Also, Australia, China, and Japan have recently announced
large-scale projects in neuroscience (Grillner 2014).

Such large-scale initiatives aim to involve close collabo-
ration among hundreds of scientists from widely diverse

disciplines, highly organized into several scientifically and
technically distinct work subdomains (e.g., the HBP has 12
research areas and more than 100 partner institutions) for
many years. Such initiatives answer to large public fund-
ing organizations (the HBP to the European Commission).
Moreover, these consortia must address specific challenges
to accountability and governance of the projects. In terms
of duration, investment, and number of people involved,
these projects are comparable in size to, up to this time, the
largest Big Science project in biology, the Human Genome
Project (1990–2003, US$2.7 billion, consortium of 20 institu-
tions; see http://www.genome.gov/11006943). Further-
more, such large-scale initiatives must emphasize
methodology. For example, the BRAIN Initiative focuses—
as the name indicates—on neurotechnologies (e.g., imag-
ing), and the HBP aims for an information and communi-
cations technology (ICT) infrastructure for setting up an
experimental facility to study and to simulate the structure
and functions of the human brain. The latter aligns with
the huge transformation of various scientific fields that
rely increasingly on computer power not only to organize
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data, but to generate new knowledge (Winsberg 2010).
These converging technologies are often referred with the
acronym NBIC: nanotechnology, biotechnology, informa-
tion technology, and cognitive science.

Such large initiatives are usually coined as “Big Scien-
ce” projects that include—to our understanding, as we out-
line in the following—two main features: first, a challenge
to organize, coordinate, and manage such a large number
of researchers and research data in a way that enables
accountability toward the funding organizations; and, sec-
ond, an important role for advanced ICT serving as a struc-
turing principle for the research carried out. In two words,
Big Science is about structure and technology. Our aim is
to outline potential consequences with ethical significances
of these two features of Big Science in the field of
neuroscience.

In doing so, we focus on the Human Brain Project for
two reasons. The first is because the HBP has already faced
opposition in the scientific community while setting up
this initiative (Waldrop 2012), which culminated in an
“open letter” sent in July 2014 to the European Commis-
sion signed by more than 800 scientists (http://www.neu-
rofuture.eu). These scientists harshly criticized governance
within the HBP and its technological focus—but they also
called for “redirect[ing] the HBP funding to smaller inves-
tigator-driven neuroscience grants,” “strongly support
[ing] the mechanism of individual investigator-driven
grants,” which points to a general skepticism about Big
Science approaches used in neuroscience. Nobel laureate
Edvard Moser recently emphasized that “The brain is too
complex, and neuroscience is too young, for all funding to
be put into a single-aimed project” (in Requarth 2015).
According to this opinion, neuroscience by its theory is not
sufficiently developed for “Big Science”; rather, one should
concentrate research efforts on relatively small grants to
diverse laboratories around the world (Requarth 2015).
This criticism is in line with studies suggesting that impact
per dollar remains constant or decreases with grant size,
which favors funding strategies that target diversity (For-
tin and Currie 2013). An effort at mediation was under-
taken before arbitration (Marquardt 2015), before the HBP
Board of Directors changed the HBP scientific program
and reframed its governance structure, which included
removing the HBP Executive Committee and requiring
representation on the board of each of the subprojects.

Second, we focus on the HBP, indeed, because of our
roles. We are regular members of the Ethics Advisory
Board (EAB) of the HBP,1 except for one of us. We regular
EAB members are independent advisors to HBP manage-
ment on ethics issues and have no duties with the HBP to

perform scientific or technical work outside of our ethics
work. No regular EAB member receives funding from the
HBP or is formally involved in research activities of the
Science and Society program of the HBP. The one excep-
tion is an ex officio member, paid for work in the HBP to
establish and coordinate the ethical committee(s) toward
accomplishing the committees’ mission. Thus, this contri-
bution is well within the prescribed roles and responsibil-
ity of the EAB to independently and critically comment,
from our unique perspective, on the developing HBP. Our
views expressed here we own, and are not intended to
reflect either the view of the committee as a whole, or the
views of the leaders of the HBP.

Furthermore, we clarify our understanding of ethics, as
some readers may question whether issues related to the
organization of scientific work or public policy really fall
into the domain of ethics. We see two reasons why the ethi-
cal analysis should go beyond “classical” ethical topics that
already are discussed in the HBP context, such as the
domain specific potential misuse of findings, or problems
such as whether brain simulation might once create enti-
ties with moral status (Choudhury et al. 2014; Lim 2014;
Rose 2014). First, research carried out in Big Science con-
texts can accentuate well-known ethical problems like data
and privacy protection. Second, such contexts affect how
neuroscience is understood, pursued, and also perceived
in the public. This is ethically relevant. For, with respect to
the ethical climate of internal collaboration (Martin et al.
2014), or where misallocation of public funding may possi-
bly exist, policy decisions must involve moral judgments.
Also, the European Commission’s first HBP ethical, as well
as technical, reviews, in January 2015, substantially
addressed ethical issues raised by organizational and gov-
ernance issues of the HBP (Technical Review Report 2015).

This contribution is structured as follows. In the sec-
ond section, we investigate whether Big Neuroscience is
actually needed as claimed to promote progress in this
field. In the third and fourth sections, we analyze in detail
the ethical issues related to structural aspects of Big Neuro-
science and issues related to the role of ICT (in particular,
simulations) to integrate project activities with knowledge.
Finally, we offer recommendations on how the ethical
challenges of Big Neuroscience might be addressed and
which competences are needed within the neuroethics
community that would support implementation of such
infrastructure.

THE JUSTIFICATION OF BIG NEUROSCIENCE

Large, structured and formalized collaborations between
scientists are a rather recent phenomenon in the history of
science. This is related partly to the increasing importance
of science for the military (Mendelsohn et al. 1988), as
exemplified by the Manhattan Project in World War II, but
also to the nature of certain research questions (e.g., in par-
ticle physics) that require large research infrastructures, as
exemplified by the CERN facilities of the European

1. Originally, two independent ethics bodies advised the HBP
Board of Directors: the Ethics, Legal and Social Aspects Commit-
tee (ELSA) and the Research Ethics Committee (REC). In Septem-
ber 2015, both committees merged into a single ethics advisory
board in conjunction with structural reorganization of the HBP.
All co-authors are currently EAB members and are unpaid except
for one (KG), who is an ex officio member.
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Organization for Nuclear Research in Geneva, Switzer-
land. The basis of these formal collaborations is that tech-
nology, broadly conceived, exists and the consequent
collaborative activities can be characterized according to
how different types of data-generating technologies are
combined with levels of formalization in the modes of
organizing access to those data (Shrum et al. 2007). “Big
Science” is defined as a substantial expansion of scientific
collaboration along several axes (Galison 1992): geographic
(in the concentration of scientific expertise and technologi-
cal capacities within cities or regions), economic (in the
monetary sponsorship of major research endeavors, on the
order of several billion dollars), multidisciplinary (in the
necessary coordination of teams from previously distinct
fields), and multinational (in the coordination of groups
with very different research styles and cultures). Further-
more, more recent initiatives, like CERN’s Large Hadron
Collider, the Sloan Digital Sky Survey, or the NASA Cli-
mate Simulation Center, are strongly related to informa-
tion technology infrastructure development allowing these
programs to create and/or to handle large amounts of data
(Markram et al. 2014).

Large-scale collaboration and a focus on technologi-
cal infrastructure are also characteristic of Big Neurosci-
ence initiatives (Grillner 2014), and Big Data efforts
purportedly have become modus operandi in neurosci-
ence, replacing smaller scale, hypothesis-driven science
(Nature Neuroscience 2014). A major motivation is that
the current research activities in neuroscience generate
huge amounts of data and scientific papers on all levels
of neuronal organization2: on gene expression in neu-
rons, neuronal connectivity, brain activity patterns cap-
tured with neuroimaging, and human and animal
behavior, just to name a few. And all these data are col-
lected by distinct research traditions, structural biology
at one end of the spectrum (ion channel identification)
and behavioral research at the other end. However, neu-
roscientists face numerous problems when trying to
integrate diverse data sets into a coherent understanding
of brain functioning, which will require a cultural shift
in not only sharing data across laboratories, but also
making theorists central players in its analysis and inter-
pretation (Sejnowski et al. 2014). One example concerns
the reuse of so-called “long-tail” data, small data sets

whose reuse is often stymied by a lack of community
data-sharing standards (Ferguson et al. 2014)—and cre-
ating these standards is one aim of Big Science
approaches. Representing huge data sets related to brain
health and disease as descriptive clinical data, labora-
tory results or brain images are other examples that
assist diagnosis and medical decision making. A large
domain of ICT infrastructure must be set up and numer-
ous technological and ethical problems will have to be
solved (Christen et al. 2016)—an endeavor that is tackled
by the Human Brain Project.

In summary, models, simulations, and large-scale
ICT infrastructures acquire new functions within neuro-
science as instruments to integrate systemic biological
knowledge, gained on all levels of neuronal organiza-
tion. Indeed, it is hard to imagine how neuroscience
would be able to address the most difficult questions of
its field—such as understanding how changes on all lev-
els of neuronal organization affect behavior or how to
address neurodegenerative diseases—without an inte-
grative perspective that focuses not only on the pro-
cesses in each level or organization, but also on the
interplay of levels—an insight that in social neuroscience
(and other fields) has led to the notion of “multi-level
analysis” (Cacioppo and Decety 2011). Therefore, mod-
els and simulations are not only used as methods to
observe specific brain processes, but also as a strategic
tool to (re)organize knowledge. An example of success
using this approach was recently described, namely,
semiautomated text mining of a considerable amount of
neuronal biophysical data from the vast electrophysio-
logical research literature. Tripathy and colleagues
(2015) found that experimental conditions (e.g., elec-
trode types, recording temperatures, or animal age) can
explain to a substantial degree the biophysical variabil-
ity observed within a neuron type; that is, electrophysio-
logical data are far more reproducible across labs than
previously appreciated. Furthermore, a novel class of
cortical and olfactory bulb interneurons that exhibit per-
sistent activity at theta band frequencies has been identi-
fied using this approach.

From the onset, the HBP has been considered a project
that aims to tackle the hard problem of integrating data
with knowledge. As the former HBP director Henry Mark-
ram has pointed out: “We are not building a model; we are
building a data integration strategy to render biologically
realistic models” (personal communication, February 21,
2013; Christen 2013). To pursue this data integration goal,
the HBP is developing six ICT-based platforms dedicated,
respectively, as Neuroinformatics, Brain Simulation, High
Performance Computing, Medical Informatics, Neuromor-
phic Computing, and Neurorobotics (for more detailed
information compare https://www.humanbrainproject.
eu). In that sense, the initiative not only aims to unify
knowledge on several levels, but also to guide empirical
research (see fourth section). Because it is practically
impossible to determine the connectivity pattern of neu-
rons for individual human brains in the same way we can

2. Grillner (2014) estimates the number of neuroscientific publi-
cation to be on the order of 100,000 papers a year. To put this in
context, the number of annual publications in the Web of Science
Core Collection subject categories reveals the following numbers
for 2014: chemistry (physical and multdisciplinary) »140,000,
material science »115,000, electrical/electronic engineering
»105,000, applied physics »75,000, biochemistry and molecular
biology »70,000, oncology »70,000, multidisciplinary sciences
»65,000, surgery »60,000, and neuroscience »55,000—i.e. the
fields that are ranked before neuroscience cover a much broader
domain of application (remember that the subject categories only
provide a rough estimate of the number of papers published in a
discipline).

Ethical Challenges of Big Neuroscience
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now sequence the genome of a person, neuroscientists will
need tools that tell them what to look for in real brains.
According to the promotors of the HBP, simulations and
brain atlases hold the promise to be “integrators” of
knowledge and “lenses” through which scientists look to
tackle the complexity of the brain.

Although there are several caveats, as last year’s con-
troversy around the HBP has demonstrated (Fr�egnac and
Laurent 2014) and as we will outline in the fourth section,
we consider this scientific strategy appropriate to narrow
the gap between brain data on the one hand, and brain the-
ories and real-world applications of neuroscience on the
other hand. We think that the fundamental critique toward
the HBP—namely, that the sheer complexity of the human
brain involving the interplay of various organizational lev-
els makes it impossible to “simulate the brain” (see first
section)—fails to appreciate the main intended purpose of
the HBP brain simulations. As explained earlier, they are
not simply a tool to investigate a specific brain process or
function. Rather, they serve as mediators to structure exist-
ing data such that they can be used for simulations,
thereby shaping the processes on how new data is gener-
ated. Thus, the uncertainty about whether the brain as a
whole can or cannot be “simulated” is not the main issue,
nor is it a question concerning the likelihood of success;
rather, apart from delivering insights into the mammalian
brain in general, this strategy would generate new meth-
odologies and techniques for handling large amounts of
data, and would cause scientists to understand more
deeply the feasibility of transforming “brain sciences” into
Big Science (Dudai and Evers 2014).

Therefore, an ethical analysis should not focus solely
on potential results of brain simulations as such, but also
on the methods, because the social process of designing
and implementing simulations and the corresponding
reorganization of knowledge have normative implications
even if certain results will never be obtained. “Simulating
the brain” is not only a matter of technical know-how or
practices involving creating simulation code, building
interfaces, and using the models; it also involves complex
processes to organize empirical and theoretical knowledge
that aim to inform the models. The HBP promoters them-
selves indirectly point to this when writing: “We propose
that the HBP use these techniques to generate a scaffold of
strategically selected data [our emphasis] on the structure
and functional organization of the human brain at different
ages and at different levels of biological organization”
(HBP Report 2012, 30). This indicates the necessity to
choose among potentially conflicting data, which involves
important but hidden normativity in model generation.
We discuss this point in more detail in the fourth section
when outlining the role of simulations as knowledge
integrators.

In summary, the current Big Neuroscience initiatives,
like the HBP, address a relevant goal, the achievement of
which would be unlikely in a looser cooperative setting,
but that requires structured collaboration across a large
range and number of researchers and institutions. Like

many other Big Science projects, the HBP initiative is not
just a “container” in which research groups continue to
work on their own agendas. This includes a technology-
driven strategy to integrate data and to guide research—
and doing Big Science also has significant effects on the
way scientific collaboration itself is generated, structured,
managed, and promoted. Taking this into account, to our
opinion, a fundamental rejection of this approach misses
the point. Rather, the focus of the analysis should be on
how Big Neuroscience features influencing neuroscience
are to be implemented and realized.

STRUCTURE: RISK–BENEFIT ANALYSIS OF

STRUCTURAL FEATURES OF BIG NEUROSCIENCE

We analyze Big Neuroscience with respect to three basic
structural features: first, the size of the pool of scientists
who are involved in the collaborative structure (“Big
Number”); second, data, that is, the amount and heteroge-
neity of the involved data (“Big Data”); and third, money,
that is, the decision of a large funding body to invest a sig-
nificant amount of research money into a single project
(“Big Money”). We now discuss all three features in detail
in order to inform a risk–benefit analysis regarding ethical
aspects related to them. Table 1 provides a summary of
this analysis.

Big Number

In general, Big Science means that a large number of scien-
tists, often from many institutions across many countries,
are involved in a rather formal mode of collaboration that
creates a trade-off between organizational coordination
and individual scientific freedom. In the “classic” bottom-
up discovery ethos of many scientific fields, the interaction
of research groups is a form of cooperation, where the
interests of the various groups are more or less equally
taken into account in decision making and everyday work.
But in large research consortia, the interests of others may
be overridden in the pursuit of the collective goal (Shrum
et al. 2007). If a researcher or a research group within a
large consortium has a better idea about what the consor-
tium should be doing, the group may not be allowed to do
it. Certainly, “small neuroscience” is also embedded into
institutional structures that impose constraints—but not in
the same way as in Big Neuroscience. This itself is not an
ethical problem, but may actually be a normative issue,
that is, an ethically justified requirement called for given
the increased accountability due to the large amount of
funding involved (discussed later). This comes with an
ethical advantage due to the directive coordination needed
in multiple projects, which can enable effective ethically
motivated oversight, including protective measures
against publication bias and efforts ensuring adequate sys-
tematic review prior to commencing research and detec-
tion of research fraud. Such advantage is more possible, at
least, when such oversight structures are embedded as an
integral part of the organization. An example is to place

8 ajob Neuroscience January–March, Volume 7, Number 1, 2016

AJOB Neuroscience

D
ow

nl
oa

de
d 

by
 [

U
Z

H
 H

au
pt

bi
bl

io
th

ek
 / 

Z
en

tr
al

bi
bl

io
th

ek
 Z

ür
ic

h]
 a

t 1
1:

37
 0

4 
A

pr
il 

20
16

 



ethics advisory functions in position to observe and react
around major decisions concerning the infrastructure.
Seen from that perspective, Big Neuroscience could seize
the opportunity to strengthen principles of responsible
research and innovation.

However, there is another important aspect related to
size that could turn into an ethical risk. As the collabora-
tion among scientists is, by necessity, more formalized, the
size of the research groups will likely be larger compared
to “small neuroscience”3—at least in the sense that the gen-
uine groups (many of them existed already before the col-
laboration started) are more constrained in their work and
are embedded in larger planning schemes after having
entered the collaboration. This may affect group climate
and research productivity. The latter, in particular, has
been investigated empirically within scientometry and
sociology of science. The majority of studies do not find a
positive relation between research productivity and group
size (Hemlin and Ollson 2013). Data rather indicate that
research groups tend to be most productive if a certain
threshold in size is not exceeded (Kenna and Berche 2011),
a finding that is also supported by general theoretical con-
siderations (Kao and Couzin 2014). The problem seems to

be further aggravated when the disciplinary diversity is
increased (Cummings et al. 2013), which is a characteristic
of Big Neuroscience due to the involvement of information
technology (for a further discussion of this point see the
fourth section). “Scaling up” the number of interacting
researchers could be a bad investment of research money.
Big Neuroscience binds into one project a quite large part
of available research money in neuroscience, and no exist-
ing data inform proponents of small neuroscience and
those of Big Science which will, in the end, be the most effi-
cient use of taxpayer money. The moral choice must be
made. The HBP reply toward the “open letter” (available
at https://www.humanbrainproject.eu/documents/10180/
17646/HBP-Statement.090614.pdf) stating that HBP fund-
ing is taken from an ICT arm of the European Commis-
sion (EC) budget does not fully appreciate this point, as
the funding scheme demands matching the commission’s
investment by third parties, which may have set different
priorities for relative distributions to neuroscience versus
ICT. Thus, disadvantaged researchers may be competing
from outside the HBP for some of the same research
money.

However, authors have argued that the usual way to
measure research productivity—in terms of publications
and citations (Kenna and Berche 2011; Fortin and Currie
2013)—is not adequate to measure the performance of Big
Science, as its success will include additional factors such
as infrastructure-built-up (like the CERN accelerator), the
generation of more efficient methodologies (e.g., cheap
genome sequencing in case of the Human Genome Project),
or public education due to a more coherent presentation of
the object under investigation (the brain in our case).

Table 1. Risk–benefit analysis of structural features of Big Neuroscience.

Ethical risks Ethical benefits

Size: One big organizational unit with
top-down defined patterns of
collaboration instead of many small
groups as independent units, organized
mainly in a “bottom-up” way.

� Conflict with “bottom-up” work
ethics of scientific cooperation

� Suboptimal investment of
research money in terms of
productivity

� More effective ethical oversight to
prevent publication bias and
research fraud

Data: Large and heterogeneous data sets
emerging from coordinated research
actions instead of data mining and
pattern recognition in existing data
bases (“classical Big Data”).

� Data security and privacy issues
across countries

� Poor understanding of role
responsibility in managing and
protecting data

� Informed consent procedures
across different cultures

� Failure because of complexity
and/or regulatory issues

� Larger database will yield more
power and reliability

� Data sharing, with clear under-
standing of each party’s role,
incorporated into science work as
a virtue or even duty

� Maximization of data collection to
contribute to human welfare

Money: Connection to a large public
funding body that commits itself to the
project, creating a special kind of
interdependence.

� Big promises that undermine
research credibility

� “Too big to fail” problem

� Anticipating and responding to
calls for accountability regarding
use of public money for research

3. Although this is often claimed, for example, also in the “open
letter” (http://www.neurofuture.eu), we found no recent pub-
lished data on neuroscience research group mean sizes. A count
performed in December 2014 in all 123 research groups of the
Neuroscience Center Zurich that cover the whole disciplinary
spectrum of neuroscience and on which data was available
revealed a mean group size of 8.4 members (professors, postdocs,
PhD students, technicians).
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Big Data

It is often claimed that Big Neuroscience and Big Data go
hand in hand. Big Data has become a large subject not only
in biomedicine in general—as well as in many other fields
like consumer research—but also in neuroscience (see the
special issue of Nature Neuroscience in November 2014 ded-
icated to this subject). Roughly, Big Data can be defined as
the availability of large amounts of heterogeneous data
requiring sophisticated data-processing algorithms includ-
ing data mining and pattern recognition. Although it is
true that Big Science generally involves the generation
and/or handling of large amounts of data, Big Data does
not by itself imply Big Science; that is, it does not need a
formal collaboration of a large number of scientists involv-
ing Big Money. Already smaller research projects might
include Big Data (e.g., analyzing connectivity patterns in
neuroimaging). Only when Big Data require new and
highly expensive technologies (e.g., the development of
new high-performance computing architectures, which is
one of the goals of the HBP), they imply Big Science (see
the next paragraph). More importantly, ethical issues
related to Big Data in general are not specific to Big Neuro-
science. What is, however, of particular relevance for Big
Neuroscience is that data size is combined with data het-
erogeneity including sensitive personal data—and this
involves not only practical but also ethical issues that go
beyond traditional research; this is also because neurosci-
entific data may contain, and therefore leave vulnerable,
much more personalizing information in a way that genet-
ics or other Big Data fields do not.

For example, if the research aim is to integrate heteroge-
neous data across a large numbers of institutions and coun-
tries, the data flow, transfer, and identification would
require new ways to secure data privacy, and to deidentify
and tag data. Data are subject to differing jurisdictional reg-
ulations governing informed consent, or—in the case of lab-
oratory animals—animal protection laws (e.g., compared to
data emerging from the United States or China). Although
the principle of subsidiarity offers guidance within the EU,
integrating data from non-EU countries might be problem-
atic—an issue that was also identified as being ethically
problematic by the European Commission itself in informa-
tion written on the current “Horizon 2020” funding scheme.
Heterogeneous data, due to its interdisciplinary nature, will
also require coordinating procedures across different disci-
plinary cultures. Animal data use may encounter transna-
tional welfare governance conflicts due to different
legislations. Human brain data are, by nature, sensitive:
even if they do not contain health care information, because
they contain information about the organ of the mind. These
issues will multiply in relevance whenever the medical
areas of neurology and psychiatry are concerned.

However, these potential pitfalls of Big Neuroscience, in
particular with relation to health care, should carefully be
weighed against the potential positive effects on providing
sounder knowledge, reliable databases, and sufficient large
samples with longitudinal data that are a necessary basis for

evidence-based medicine. “Codes of conduct” must be devel-
oped to promote responsible research and innovation (RRI)
and help create benefits for society (von Schomberg 2013). A
more difficult dilemma would emerge if evidence were to be
interpreted such that standards of data protection would
have to be lowered in order that the Big Data approach
applied to neuroscience would indeed create benefit.

Big Money

Big Neuroscience starts with the decision by a large funding
body to invest ample research money into a single project.
Clearly, whenever a big chunk of money is conspicuously
(and correctly) visible to the public eye, its purpose should
be publicly explained and its responsible use also accounted
for publicly. But this may lead to unrealistic justifications on
the part of researchers and unrealistic expectations in the
public, in research agencies, and in politicians who have to
justify their budget allocation in the political arena. Thus,
justifying large investments of public money in research is
more and more accompanied by “big promises” that may in
the long run undermine the credibility of science. High-vol-
ume funding creates considerable pressure for success and
tangible outcomes that are in line with the expectations and
priorities of the sponsor. “Big promises” also affect the way
project goals and achievements are communicated to the
public. An example is the notion of “social bubbles,” that is,
human expectations being inflated beyond reason. A recent
study showed that the Human Genome Project shared sev-
eral characteristics of financial market bubbles (Gisler et al.
2010). If the picture is biased toward success, impact, and
“return on investment,” it is difficult to convey a realistic
picture of progress as well as obstacles and problems to the
public. This may in turn create unrealistic expectations by
the public of what science can realistically achieve, leading
to more pressure on the researchers, and increasing the risk
of disappointment if the anticipated results cannot be deliv-
ered. Furthermore, justification and expectations are usually
inflated by simplified, often exciting and enticing explana-
tions in mass media. Excessive societal investment and
expectations may have contributed to the fabrication of data
by Woo Suk Hwang (Saunders and Savulescu 2008) in the
early stages of therapeutic cloning. Thus, expectation man-
agement on side of the researchers should explicitly be
addressed by leaders of Big Neuroscience projects to down-
modulate the amplitude in the well-known cycle of hype
and criticism (Caulfield et al. 2010).

Setting aside the expectation problem, Big Science, Big
Money, and public attention often combine in ways that
generate pressure to create strict governance and oversight
structure. More is “at stake,” and the pressure to deliver
practical applications often increases, which may inevita-
bly call for “narrowing” the scientific work program, leav-
ing out relevant subfields and collaborators. This may
counteract the ethical benefits mentioned earlier, namely,
that Big Neuroscience could make it easier to implement
ethical governance within the organization.
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Related to this, the funding body is in a special way
committed to the project. Large-scale funding in science
involving hundreds of millions of dollars or Euros may
become “not falsifiable” in a practical sense, as all involved
stakeholders have incentives to make the project a success.
This is the “too big to fail” issue. Certainly, however, even
large projects can fail, as the recent cancelation of the so-
called National Children’s Study shows. This longitudinal
study involving 100,000 children that consumed more than
$1.2 billion within the last 14 years was stopped on Decem-
ber 12, 2014, despite this investment, the buildup of 40
recruitment centers, and the enrollment of already 5,700
children (Reardon 2014).

Each of these risks could be turned on its head. Greater
integration could lead to better international oversight,
ensuring coordinated and expert vetting of proposed
research, requiring systematic literature review, an under-
taking to make results publicly accessible (so preventing
publications bias) (Savulescu et al. 1996), and greater over-
sight to detect fraud or misconduct internally. By establish-
ing expert scientific and ethical review with full funding,
such science could be conducted more efficiently and more
ethically.

TECHNOLOGY—ETHICAL ISSUES OF THE

SIMULATION APPROACH

A second characteristic of Big Science, beside structural
features, is the decisive role of ICT as an instrument to
structure and guide scientific activities. It’s unthinkable
that organizations like the CERN, which generates tera-
bytes of data, or the Human Genome Project could ever
have functioned without such technology. As large-scale
simulations4 have become important in many scientific
fields, such as cosmology and climate research, supercom-
puter infrastructures have become an indispensable tool.
This is certainly also the case in neuroscience (Gerstner
et al. 2012), and a broad spectrum of large-scale models
and simulations is found in neuroscience (De Garis et al.
2010). Examples include the “Blue Brain” (Markram 2006),
the “SyNAPSE project” (Systems of Neuromorphic Adap-
tive Plastic Scalable Electronics; Ananthanarayanan et al.
2009), a large-scale model of the mammalian thalamocorti-
cal systems (Izhikevich and Edelman 2008), and the
SPAUN model (Semantic Pointer Architecture Unified
Network; Eliasmith et al. 2012).

The interconnection of simulation tools and simulation
objects and the importance of the information metaphor in
neuroscience raise various questions, some of which
already are discussed in the literature (e.g., Bennett and
Hacker 2003; Garson 2003; Falkenburg 2012). This includes
epistemic issues like the meaning of “information” or the
epistemic status of simulation results. These are indeed
important and should be investigated further in the dis-
courses about in silico experiments in research—this is,
however, beyond the scope of this article (see for further
reading, e.g., DeLanda 2010; Dudai and Evers 2014; Gra-
melsberger 2010).

In the following, we focus on the effects of using simu-
lation technologies in neuroscience. We suggest that the
modes of interactions of four basic units that characterize
simulation-driven neuroscience—the real brain, the
knowledge generated out of researching the brain, the
brain simulations, and the public observer of neurosci-
ence—are affected. Of concern are basic values that are
also of ethical concern: trust, community, truth, and credi-
bility. We discuss each of these points separately—partly
by including experiences made in climate modeling, a field
with profound experiences in setting up large-scale simu-
lations in a highly interdisciplinary setting to demonstrate
that the risks identified are not merely theoretical but
could lead to consequences with ethical significance (most
of the examples referring to climate modeling emerge
from Lahsen [2005]).

Interrelation Between Real Brains and Brain

Knowledge

The first point relates to trust. Within the Human Brain
Project, simulations are intended to be used as predic-
tive tools; that is, they should guide which experimental
measures should be obtained in order to test theories.
Predictive models, however, are an important extension
of the classical hypothetic-deductive approach in sci-
ence. Deducible from complex theory, explaining the
experimental variables and measures may be difficult;
indeed, neuronal dynamics may not any longer be
understandable to the experimenter conducting the
empirical tests. Simulation code represents the theory
and it can be used to generate hypotheses (e.g., a specific
distribution of synapses) that experimenters may then
test. Simulations are intended to guide experiments in
this way, which enlarges the usual scope of simulations
in science—namely, to solve problems that are intracta-
ble to current analytical theory and to gain insight into
physical phenomena where the accuracy and scope of
experimental results are limited.

If simulations “guide” experiments, several aspects
have to be considered. First, the better the laws are that
govern the system, the more the predictive power of simu-
lations increases. This is why simulations in solid-state
physics are a common tool used, for example, to validate
the integration of new chemical elements into computer
chips (Pignedoli et al. 2007) and in this way informing the

4. To clarify the terminology used in this contribution: Models
are abstractions of real-world structures and/or processes mostly
in the form of mathematical equations or algorithms (although
some models are physical, e.g., in hydrology). Simulations refer to
the behavior of the model in time, whereas the equations or algo-
rithms are usually implemented on a computer, requiring in most
cases numerical approximations. Simulations may specify inputs,
information handling mechanisms, or outputs in order to allow
for prediction, retrodiction, explanation, or exploration. Due to the
numerical nature of most simulation calculations, simulations can
be understood as approximations of models.
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actual chip design process. Neuroscience, however, is not
physics in terms of the precision and comprehensiveness
of available first principles (e.g., the laws of quantum
physics). This may undermine trust regarding the guiding
role of simulations. Second, experiments in neuroscience
can be more difficult to conduct in terms of time and other
resources (e.g., animals) compared to solid-state physics.
This means that there may be a gap in the speed of how
the simulations proceed and the time needed to actually
perform the experiments the simulations propose. Main-
taining insight and awareness of the mechanisms and basis
for predictions therefore is essential to enable close and
intense collaboration between modelers and those who
use them.

These issues concern moral choices about the way to
organize research. Setting aside solid-state physics, simu-
lation has (to our knowledge) not yet been used in a way
to guide experiments with complex systems like ecosys-
tems or the climate system—so experience is lacking
regarding the effects of a “reversed command structure”
on the social environment within research groups. By
“reversed command structure” we mean that simulation
technologists suggest to empiricists what experiments
could be performed, and not vice versa. From an ethical
point of view, such a strategy benefits when it reduces the
number of “unnecessary” animal experiments. Neverthe-
less, we would like to note that this specific way of using
simulations as guides to the research process may be in
some tension with the ethos of science—namely, to be
open to the unexpected (i.e., experiments that are not sug-
gested from simulations). Recall that a substantial part of
initial scientific skepticism regarding the HBP refers to
mistrust in the usefulness of simulations as “research
guidance,” given the vast complexity of the brain (Wal-
drop 2012) and a perceived lack of corrective loops
between hypotheses and experimental tests within the
HBP (Fr�egnac and Laurent 2014; see also Dudai and Evers
2014). Simulations in other biomedical fields (protein fold-
ing and molecular dynamical simulations) demonstrate
the important role of coarse graining (i.e., finding physi-
cally sound simplifications) in order to handle computa-
tional complexity—but this coarse graining is based on a
well-elaborated theoretical grounding of the underlying
processes (Kamerlin et al. 2011). Critics question that neu-
roscience has achieved theoretical understanding to make
decisions for what levels of detail should be used for spe-
cific simulations (Requarth 2015).

Interrelation Between Real Brains and Brain

Simulations

The second point relates to community. The creation of
brain simulation requires the integration of expertise that
is not traditionally present in neuroscience—building a
neuroscience/ICT modeling community. This goes along
with the integration of different scientific cultures that see
the object under investigation from different perspec-
tives—which by itself might be a virtue. However,

historically, it is interesting to observe that the first attempt
to grasp neurobiological processes in terms of information
theory and computation in the 1950s and 1960s failed to
generate a productive research orientation in a similar way
as in molecular biology. In the latter field, the notion of a
“genetic code” became a powerful unifying metaphor for
guiding research, whereas the search for a “neural code”
provided a perplexity of approaches in neuroscience
(Christen 2006). This may partly explain why there is still a
large skepticism within neuroscience about the role of sim-
ulation as a method—in particular when the intention is to
simulate the whole brain—as exemplified in the “open
letter” and discussed in the HBP mediation report (Mar-
quardt 2015). Therefore, the day-to-day collaboration
among scientists and technologists representing quite dif-
ferent scientific cultures must be considered in design of
the interactions.

Experiences in climate modeling demonstrate the pit-
falls of interactions between different scientific cultures.
First, climate simulations that intend to model a complex
phenomenon are by themselves complex structures. Often,
model developers build only parts of a model, integrating
submodels and representational schemes (parameters)
developed by other modeling groups. Even scientists
(model users) who are not primarily model developers typi-
cally modify the models they have obtained from elsewhere.
The difficulty of distinguishing properly between develop-
ers and users complicates a clear identification of the source
of a model. Second, this increased specialization has
reduced the amount of timemodel developers have to study
the atmosphere using empirical data. This has contributed
to an alienation of the empiricists from the real world whose
role is checking models against empirical knowledge.
Empiricists live in a culture that also involves humility
about the accuracy of forecasts of atmospheric conditions,
which is supported by the common experience of seeing
synoptic and numerical weather forecasts turning out
wrong. They complain that model developers often freeze
others out and tend to be resistant to critical input, living in
a “fortress mentality” (Lahsen 2005). Therefore, an ethical
risk emerges on the level of the climate of research groups
that are intended to interact in an open fashion, for example,
due to failures to acknowledge contributions in large-scale
collaborations or general distrust and noncooperation that
harm the execution of the project goals.

Interaction Between Brain Simulation and Brain

Knowledge

The third point relates to truth: Simulations as intended by
the HBP assume a certain model of knowledge. That is,
structured access to data and integration and interpreta-
tion of data across all levels will, due to the enormous
number of publications in neuroscience,5 depend on

5. The promoters of the Human Brain Project estimate that the
“publication body” relevant for the project consists of at least
30 million papers (HBP 2012, 37).
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automated procedures of text mining and the like. This
buildup of knowledge models, that is, structured access to
data and publications referring to the phenomena one
wants to model, is guided by normative decisions—what
should be included in these knowledge libraries and what
should not? This selection procedure differs from tradi-
tional strategies relying on peer review, as the latter allows
for contradictory information and multiple disagreements
(Rose 2014). But when creating models, at some point one
has to choose the framework of the model. Models utiliz-
ing only one or very few mechanisms may be unproblem-
atic—the model would be a tool to assess which
mechanism leads to better predictions (e.g., which distri-
bution of synaptic weights onto cortical neurons shape
their spiking activity; Iyer et al. 2013). But more complex
models that use techniques like parameterization make
more decisions necessary. Thus, there may be an incentive
to resolve conflicting data to establish a “coherent” knowl-
edge base by ignoring these conflicts. This problem is
aggravated when knowledge once considered “confirmed”
is questioned again. When this knowledge has already
been embedded in simulation code, much greater effort
will be needed to resolve the conflict, tempting one to
neglect this discrepancy. Those who manage the model
would need to recognize that it needs to be modified, but
they may be heavily invested in maintaining the model
because of their effort in building the model and their
reputation.

As an illustration, the functional role of columns in
the cortex of higher mammals, according to the design-
ers of the “Blue Brain” project—the forerunner of the
HBP—was assumed to be “building blocks” in the sense
that simulating a column in the rat barrel cortex would
be a first step toward a whole cortex simulation. How-
ever, whether columns have any such functional role
within neuroscience is controversial (Horton and Adams

2005). In that particular case, that would, perhaps, not
be relevant for validating the model (Srikanth Ramasw-
amy, personal communication during the workshop
“Future Neuroscience and the HBP,” June 11–13, 2015,
Brocher Foundation, Geneva, Switzerland), but it illus-
trates the problem of “strategic selection” of data. Con-
flicting knowledge becomes critical when creating
models using data or generating hypotheses based on
the model’s assumptions. Dealing with this issue
requires careful governance during the buildup of large-
scale simulations. It also requires a commitment to levels
of confidence rather than knowledge, and a prepared-
ness and flexibility to use alternative models.

Again, experiences in climate modeling concerning
the effect upon the structure of knowledge demonstrate
that this risk is not merely theoretical. This results from
the fact that simulation codes are tricky to develop and
work with (Sundberg 2010). It often takes a long time to
develop a code that does not crash during calculations
and, when sufficiently stable, maintains sensitivity cali-
bration, specifications, and parameters (see, e.g., Wins-
berg 2003). Therefore, the psychological and social
investment in models, and the social worlds of which
the modelers are a part, can reduce the critical distance
one has from one’s own creations. Although such per-
sonal and professional investments are not unique to the
field of modeling, the problem is aggravated by the find-
ing that, already in a time when codes were simpler,
model codes were seldom subjected to peer review
(Bankes 1993) and large-scale model studies are never
replicated in their entirety by other scientists. Doing so
would require reimplementing an identical conceptual
model. Replication in science is generally difficult (Col-
lins and Pinch 1993), and in the field of climate model-
ing the exact reproduction of a climate model outcome
will never happen due to the internal model variability

Table 2. Risk–benefit analysis of technological features of Big Neuroscience that substantially relies on simulations

Ethical risks Ethical benefits

Trust: Simulations as “guiders” of
empirical research.

� Interference with the ethos of free
and open science (also due to
pushing efficiency)

� More efficient empirical research
that minimizes the use of resour-
ces (in particular, animals)

Community: Integration of an ICT-
based “simulation culture” in
neuroscience.

� “Fortress mentality” and alien-
ation phenomena

� Increased incentive for interdisci-
plinary collaboration

Truth: Restructuring the knowledge
base of neuroscience to make it
more compatible for modeling.

� Ignorance of conflicts in data/
knowledge

� Missing peer-review culture

� Better awareness for conflicting
findings due to systematic mining
of available knowledge

Credibility: Using simulations as
tools for communicating research
results.

� Lacking standards regarding
visualization blur the boundary
between reality and simulation

� Novel ways to communicate
complex phenomena increase
public understanding of
neuroscience
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Table 3. Recommendations

Issue class Recommendations

Structural
features

Size � Ensure the HBP has scientific and ethical expertise to enable sys-
tematic review, publication of all data, coordination between
groups, and that it provides oversight for fraud and misconduct,
etc., that is beyond the usual research ethics review processes.

� Scan the patterns of collaboration for potential ethical issues that
affect the climate in research groups.

� Embed ethics contact persons (ethics rapporteur) within each of the
research divisions.

� Protect “whistleblowing” within the organization.
Data � Harmonization of procedures across workgroups that may have

different political persuasions.
� Cooperation agreement should include also standards for research
ethics, including codes of conduct.

� Do not demand matching of every detail regulated by law
(“appropriate granularity of regulations”).

Money � Enable project responsiveness to anticipate calls for accountability
regarding use of public money for research.

� Engage project internal public relations office to develop and main-
tain awareness of the need, and to design appropriate response, to
avoid “overselling” results.

Technological
features

Trust � Ensure that the experimenters performing the verification/falsifi-
cation tests meet core competency requirements regarding how
simulations are generating predictions, including system strengths
and weaknesses.

� Allow some openness for explorative neuroscientific experiments
outside of the predictive range of simulations.

Community � Define interfaces and modes of collaboration between modelers
and empirical scientists to allow for knowledge and experience
transfer and to avoid “fortress mentalities.”

� Ensure through education some understanding of the scientific cul-
ture of the counterparts.

Truth � Define procedures such that working with or adapting of simula-
tion code is reproducible.

� Communicate openly when models involve choices among con-
flicting data/theories.

� Use programming strategies to avoid having empirical knowledge
embedded in code that cannot be revised due to prohibitive invest-
ments when revising the code.

� Determine protocols that allow for quality control of simulation
code in a similar way as peer review of scientific contributions.

� Support varieties of models/simulations that deal with similar
problems.

� Analyze the effect of model creation on structuring and selecting
the data that provides the foundation of the models.

Credibility � Communicate openly that simulation visualizations involve
design decisions that are not present in the real object (e.g., regard-
ing color choices). Develop some standards of different types of
visualization that emerge out of simulations (e.g., regarding the
appearance of neurons) and ensure distinctness from other types of
visualizations (e.g., brain imaging).
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that results in chaotic dynamic perturbations. The
sucomponents of the optimal climate models are closely
scrutinized and compared in international peer-
reviewed studies, among various models, aiming to find
convergence in their findings. This kind of lack of repro-
ducibility could seriously threaten Big Neuroscience—if
spectacular predictions from climate models or, in our
case, brain models don’t come true, this may jeopardize
funding for the whole field.

Interaction Between Brain Simulation/Knowledge and

the Public

The final point concerns credibility. Simulations become
communication tools; that is, they generate a new type
of evidence (visualizations, movies) relevant to commu-
nication between scientists working on the various levels
of brain organization, as well as for informing the pub-
lic. It is well known that representational formats gener-
ate a certain authority and strength of persuasiveness,
which grows out of its analytical power, its power to
suggest and to communicate (Giere 1988)—a claim that
has been empirically confirmed by Keehner et al. (2011)
for different types of brain images. Visualizations guide
scientific perception and interpretation of underlying
data (Huber 2011). However, using simulations as com-
munication tools requires conventions in information
visualization of the output generated by the simulation.
Whether these conventions are present in brain simula-
tions can be questioned, given the lack of standards in
neuroimaging (Christen et al. 2013). Thus, it will be cru-
cial that as one goes from displaying a stream of num-
bers (referring, e.g., to structural positions of synapses,
current flow within dendrites, and the like) to visualiz-
ing rich and dynamic data, for example, in animated
graphics and movies, simulation results must be pre-
sented in a visual language that distinguishes them from
empirical results.

A potential confusion of simulation with naturalistic
data may be part of a more general phenomenon. Confla-
tion of simulations with “observations,” “samples,” and
“data” has been identified in studies of scientists in several
fields of research (Dowling 1999). Simulation techniques
may especially encourage such conflation, however. For
example, Stefan Helmreich’s (1998) ethnographic study of
artificial life simulators revealed the powerful effect of
simulations on the imagination of their creators and users.

In summary, although the use of technology within Big
Neuroscience primarily relates to epistemological and
sociological (i.e., on how the involved scientists interact)
issues, it also can have relevant ethical effects—both posi-
tive and negative ones. Table 2 provides an overview in
that respect.

CONCLUSION AND RECOMMENDATIONS

Here, we have outlined that Big Neuroscience, due to its
structural and technological features, is associated with

specific ethical challenges that should be a focus in neuro-
ethical discourse. The intention of this article is to raise
awareness regarding these issues that—on first sight—
appear to be more of a methodological or organizational
kind. Ethical reflection should not only concern the possi-
ble products of Big Neuroscience, but also the specific way
these products are made. Certainly, the issues raised
deserve a much broader analysis than our overview can
provide. Nevertheless, we would like to point to some gen-
eral recommendations that could help to address them. We
structure them along the seven points we have outlined in
the article (see Table 3).

The analogy to climate modeling shows that ethical
risks associated with Big Science gain relevance when Big
Science is intended to be used to support solving global
problems. It is thus not surprising that some of the critique
raised against the political implications of climate model-
ing relied on issues related to methodology or modes of
interaction, for example, with respect to the “climate-gate”
controversy of 2009 resulting from an illegal attack of the
servers at the University of East Anglia in Britain.6 There is
admittedly much more to say on this debate—but the point
here is merely that the practice of modeling involves vari-
ous critical issues that have the potential to undermine the
function of models and simulations, in particular when
they obtain political relevance. Given the enormous bur-
den brain-related diseases have, it is possible that also
brain simulations will obtain such a political role, for
example, with respect to guiding allocation of resources
for research in neurodegenerative diseases. Possibly, brain
simulations, in combination with personalized medical
strategies, may at some time in the future guide therapeu-
tic decisions for individual patients, making the ethical
impact immediate. Projects like the virtual brain (www.vir
tualbrain.org) have as an explicit goal to customize models
to individuals for precisely this purpose. It will thus be
important that the neuroethics community increases its
knowledge on issues related to information technology
and brain modeling in order to be able to critically accom-
pany these new developments.&

REFERENCES

Ananthanarayanan, R., S. K. Esser, H. D. Simon, and D. S. Modha.

2009. The cat is out of the bag: Cortical simulations with 109 neu-

rons, 1013 synapses. Proceedings of the Conference on High Perfor-

mance Computing Networking, Storage and Analysis 2009, 1–12.

Portland, OR: ACM.

Bankes, S. 1993. Exploratory modeling for policy analysis. Opera-

tions Research 41(3): 435–49.

6. Unknown hackers stole several thousand e-mails and other
text files that then were considered to demonstrate that climate
researchers manipulated data in favor or climate change and
attempted to suppress critics. Later, committees investigated the
allegations and published reports and found no evidence of fraud
or scientific misconduct.

January–March, Volume 7, Number 1, 2016 ajob Neuroscience 15

Ethical Challenges of Big Neuroscience

D
ow

nl
oa

de
d 

by
 [

U
Z

H
 H

au
pt

bi
bl

io
th

ek
 / 

Z
en

tr
al

bi
bl

io
th

ek
 Z

ür
ic

h]
 a

t 1
1:

37
 0

4 
A

pr
il 

20
16

 

http://www.virtualbrain.org
http://www.virtualbrain.org


Bennett, M. R., and P. M. S. Hacker. 2003. Philosophical foundations

in neuroscience. Malden, MA: Blackwell.

Cacioppo, J. T., and J. Decety. 2011. Social neuroscience: Chal-

lenges and opportunities in the study of complex behavior. Annals

of the N.Y. Academy of Science 1224:162–73.

Caulfield, T., C. Rahul, A. Zarzeczny, and H. Walter. 2010.

Mapping the coverage of neuroimaging research SCRIPTed 7(3):

421–28.

Choudhury, S., J. R. Fishman, M. L. McGowan, and E. T. Juengst.

2014. Big data, open science and the brain: Lessons learned from

genomics. Frontiers in Human Neuroscience 16(8): 239.

Christen, M. 2006. The role of spike patterns in neuronal information

processing. A historically embedded conceptual clarification. ETH-Diss

No. 16464. Reprinted 2012, S€udwestdeutschen Verlag f€ur

Hochschulschriften.

Christen, M. 2013. Gehirn-Simulationen—ein hindernisreicher

Erkenntnisweg, 60. Neue Z€urcher Zeitung, March 27.

Christen, M., J. Domingo-Ferrer, B. Draganski, T. Spranger, and H.

Walter. 2016. On the compatibility of Big Data driven research and

informed consent—The example of the Human Brain Project. In

Ethics of biomedical big data, ed. L. Floridi and B. Mittelstadt.

Springer.

Christen, M., D. A. Vitacco, L. Huber, et al. 2013. Colorful brains:

14 Years of display practice in functional neuroimaging. Neuro-

image 73:30–39.

Collins, H., and T. Pinch. 1993. The golem: What everyone should

know about science. Cambridge, UK: Cambridge University

Press

Cummings, J. N., S. Kiesler, R. Bosagh Zadeh, and A. D. Balak-

rishnan. 2013. Group heterogeneity increases the risks of large

group size: A longitudinal study of productivity in research

groups. Psychological Science 24(6): 880–90.

De Garis, H., C. Shuo, B. Goertzel, and L. Ruiting. 2010. A world

survey of artificial brain projects, Part I: Large-scale brain simula-

tions.Neurocomputing 74:3–29.

DeLanda, M. 2010. Philosophy and simulation. The emergence of syn-

thetic reason. London, UK: Continuum.

Dowling, D. 1999. Experimenting on theories. Science in Context 12

(2): 261–73.

Dudai, Y., and K. Evers. 2014. To simulate or not to simulate: What

are the questions?Neuron 84:254–61.

Eliasmith, C., T. C. Stewart, X. Choo, et al. 2012. A large-scale

model of the functioning brain. Science 338:1202–5.

Falkenburg, B. 2012. Mythos Determinismus. Wieviel erkl€art uns die

Hirnforschung?Heidelberg, Germany: Springer.

Ferguson, A. R., J. L. Nielson, M. H. Cragin, A. E. Bandrowski,

and M. E. Martone. 2014. Big data from small data: Data-

sharing in the ‘long tail’ of neuroscience. Nature Neuroscience

17(11): 1442–47.

Fortin, J.-M., and D. J. Currie. 2013. Big science vs. little science:

How scientific impact scales with funding. PLoS ONE 8(6): e65263.

Fr�egnac, Y., and G. Laurent. 2014. Where is the brain in the

Human Brain Project? Nature 513:27–29

Galison, P. 1992. The many facets of Big Science. In Big science: The

growth of large-scale research, ed. P. Galison and B. W. Hevly, 1–17.

Stanford, CA: Stanford University Press.

Garson, J. (2003). The introduction of information into neurobiol-

ogy. Philosophy of Science 70:926–36.

Gerstner, W., H. Sprekeler, and G. Deco. 2012. Theory and simula-

tion in neuroscience. Science 338:60–65.

Giere, R. 1988. Explaining science: A cognitive approach. Chicago, IL:

University of Chicago Press.

Gisler, M., D. Sornette, and R. Woodard. 2010. Exuberant innova-

tion: The human genome project. ArXiv Physics and Society. Avail-

able at: http://arxiv.org/abs/1003.2882 (accessed January 22,

2015).

Gramelsberger, G. 2010. Computerexperimente. Zum Wandel der Wis-

senschaft im Zeitalter des Computers. Bielefeld, Germany: Transcript

Verlag.

Grillner, S. 2014. Megascience efforts and the brain. Neuron 82(6):

1209–11.

HBP Report. 2012. The Human Brain Project. A report to the European

Commission. Available at: https://www.humanbrainproject.eu/

documents/10180/17648/TheHBPReport_LR.pdf/18e5747e-10af-

4bec-9806-d03aead57655 (accessed January 22, 2015).

Helmreich, S. 1998. Silicon second nature: Culturing artificial life in a

digital world. Berkeley, CA: University of California Press

Hemlin, S., and L. Olsson. 2013. The psychology of research

groups: Creativity and performance. In Handbook of the psychology

of science, ed. G. J. Feist and M. E. Gorman, 393–415. New York,

NY: Springer.

Horton, J. C., and D. L. Adams. 2005. The cortical column: A struc-

ture without a function. Philosophical Transactions of the Royal Soci-

ety B 360:837–62.

Huber, L. 2011. Norming normality. On scientific fictions and

canonical visualisations.Medicine Studies 3:41–52.

Iyer, R., V. Menon, M. Buice, C. Koch, and S. Mihalas. 2013. The

influence of synaptic weight distribution on neuronal population

dynamics. PLoS Computational Biology 9(10): e1003248.

Izhikevich, E. M., and G. M. Edelman. 2008. Large-scale model of

mammalian thalamocortical systems. Proceedings of the National

Academy of Science of the United States of America 105(9): 3593–98.

Kamerlin, S. C., S. Vicatos, A. Dryga, and A. Warshel. (2011).

Coarse-grained (multiscale) simulations in studies of biophysical

and chemical systems. Annual Reviews in Physical Chemistry 62:

41–64.

Kao, A. B., and I. D. Couzin. 2014. Decision accuracy in complex

environments is often maximized by small group sizes. Proceedings

of the Royal Society B 281(1784): 20133305. doi:10.1098/rspb.2013.

3305

Keehner, M., L. Mayberry, and M. H. Fischer. 2011. Different clues

from different views: The role of image format in public percep-

tions of neuroimaging results. Psychonomic Bulletin & Reviews 18

(2): 422–28.

Kenna, R., and B. Berche. 2011. Critical mass and the dependency

of research quality on group size. Scientometrics 86:527–40.

16 ajob Neuroscience January–March, Volume 7, Number 1, 2016

AJOB Neuroscience

D
ow

nl
oa

de
d 

by
 [

U
Z

H
 H

au
pt

bi
bl

io
th

ek
 / 

Z
en

tr
al

bi
bl

io
th

ek
 Z

ür
ic

h]
 a

t 1
1:

37
 0

4 
A

pr
il 

20
16

 

http://arxiv.org/abs/1003.2882
https://www.humanbrainproject.eu/documents/10180/17648/TheHBPReport_LR.pdf/18e5747e-10af-4bec-9806-d03aead57655
https://www.humanbrainproject.eu/documents/10180/17648/TheHBPReport_LR.pdf/18e5747e-10af-4bec-9806-d03aead57655
https://www.humanbrainproject.eu/documents/10180/17648/TheHBPReport_LR.pdf/18e5747e-10af-4bec-9806-d03aead57655


Lahsen, M. 2005. Seductive simulations? Uncertainty distribution

around climate models. Social Studies of Science 35:895–922.

Lim, D. 2014. Brain simulation and personhood: A concern with the

humanbrain project.Ethics and Information Technology 16:77–89.

Markoff, J. 2013. Obama seeking to boost study of human brain.

New York Times, February 17. Available at: http://www.nytimes.

com/2013/02/18/science/project-seeks-to-build-map-of-human-

brain.html?pagewantedDall&_rD0 (accessed January 22, 2015).

Markram, H., R. Frackowiak, and K. Meier. 2014. Big Digital

Science—A roadmap for the brain. Available at: http://ec.europa.

eu/archives/commission_2010-2014/kroes/en/content/digital-

minds-new-europe.html

Markram, H. 2006. The Blue Brain Project. Nature Reviews: Neuro-

science 7:153–60.

Marquardt, W. 2015. Human Brain Project mediation report.

Available at: http://www.fz-juelich.de/SharedDocs/Pressemittei

lungen/UK/DE/2015/15-03-09hbp-mediation.html;jsessionidD
BE4F5917ECDF2E5F8CC0ED6380219726 (accessed July 19, 2015).

Martin, S. R., J. J. Kish-Gephart, and J. R. Detert. 2014. Blind forces:

Ethical infrastructures and moral disengagement in organizations.

Organizational Psychology Review 4(4): 295–325.

Mendelsohn, E., M. R. Smith, and P. Weingart, eds. 1988. Science,

technology, and the military. Dordrecht, The Netherlands: Kluver.

Nature Neuroscience. 2014. Editorial. Focus on big data. Nature Neu-

roscience 17(11): 1429.

Pignedoli, C. A., A. Curioni, and W. Andreoni. 2007. The anoma-

lous behavior of the dielectric constant of hafnium silicates: A first

principles study. Physical Review Letters 98(3): article 037602.

Reardon, S. 2014. NIH ends longitudinal children’s study. Nature

News, doi:10.1038/nature.2014.16556. Available at: http://www.

nature.com/news/nih-ends-longitudinal-children-s-study-1.16556

(accessed February 4, 2015).

Requarth, T. 2015. The big problem with “big science” ventures—

Like the Human Brain Project. Available at: http://nautil.us/

blog/the-big-problem-with-big-science-ventureslike-the-human-

brain-project (accessed September 9, 2015).

Rose, N. 2014. The Human Brain Project: Social and ethical chal-

lenges.Neuron 82(6): 1212–15.

Saunders, R., and J. Savulescu. 2008. Research ethics and lessons

from Hwanggate: What can we learn from the Korean cloning

fraud? Journal of Medical Ethics 34(3): 214–2 21.

Savulescu J., I. Chalmers, and J. Blunt. 1996. Are research

ethics committees behaving unethically? some suggestions for

improving performance and accountability. British Medical Journal

313(7069): 1390.

Sejnowski, T. J., P. S. Churchland, and J. A. Movshon. 2014.

Putting big data to good use in neuroscience. Nature Neuroscience

17(11): 1440–41

Shrum, W., J. Genuth, and I. Chompalov. 2007. Structures of scien-

tific collaboration. Cambridge, MA: MIT Press.

Sundberg, M. 2010. Organizing simulation code collectives. Science

Studies 23(1): 37–57.

Technical Review Report of the HBP. 2015. Available at: https://

www.humanbrainproject.eu/-/hbp-technical-review-report-now-

available (accessed July 21, 2015).

Tripathy, S. J., S. D. Burton, M. Geramita, R. C. Gerkin, and N. N.

Urban. 2015. Brain-wide analysis of electrophysiological diversity

yields novel categorization of mammalian neuron types. Journal of

Neurophysiology 113(10): 3474–3489. doi:10.1152/jn.00237.2015

Von Schomberg, R. 2013. A vision of responsible innovation.

In Responsible innovation, ed. R. Owen, M. Heintz, and J. Bessant,

51–74. London, UK: John Wiley.

Waldrop, M. M. 2012. Computer modelling: Brain in a box. Nature

482:456–58.

Winsberg, E. 2010. Science in the age of computer simulation. Chicago,

IL: University of Chicago Press.

Winsberg, E. 2003. Simulated experiments: Methodology for a

virtual world. Philosophy of Science 70:105–25.

January–March, Volume 7, Number 1, 2016 ajob Neuroscience 17

Ethical Challenges of Big Neuroscience

D
ow

nl
oa

de
d 

by
 [

U
Z

H
 H

au
pt

bi
bl

io
th

ek
 / 

Z
en

tr
al

bi
bl

io
th

ek
 Z

ür
ic

h]
 a

t 1
1:

37
 0

4 
A

pr
il 

20
16

 

http://www.nytimes.com/2013/02/18/science/project-seeks-to-build-map-of-human-brain.html?pagewanted=all&_r=0
http://www.nytimes.com/2013/02/18/science/project-seeks-to-build-map-of-human-brain.html?pagewanted=all&_r=0
http://www.nytimes.com/2013/02/18/science/project-seeks-to-build-map-of-human-brain.html?pagewanted=all&_r=0
http://www.nytimes.com/2013/02/18/science/project-seeks-to-build-map-of-human-brain.html?pagewanted=all&_r=0
http://www.nytimes.com/2013/02/18/science/project-seeks-to-build-map-of-human-brain.html?pagewanted=all&_r=0
http://www.nytimes.com/2013/02/18/science/project-seeks-to-build-map-of-human-brain.html?pagewanted=all&_r=0
http://ec.europa.eu/archives/commission_2010-2014/kroes/en/content/digital-minds-new-europe.html
http://ec.europa.eu/archives/commission_2010-2014/kroes/en/content/digital-minds-new-europe.html
http://ec.europa.eu/archives/commission_2010-2014/kroes/en/content/digital-minds-new-europe.html
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-09hbp-mediation.html;jsessionid=BE4F5917ECDF2E5F8CC0ED6380219726
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-09hbp-mediation.html;jsessionid=BE4F5917ECDF2E5F8CC0ED6380219726
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-09hbp-mediation.html;jsessionid=BE4F5917ECDF2E5F8CC0ED6380219726
http://www.nature.com/news/nih-ends-longitudinal-children-s-study-1.16556
http://www.nature.com/news/nih-ends-longitudinal-children-s-study-1.16556
http://nautil.us/blog/the-big-problem-with-big-science-ventureslike-the-human-brain-project
http://nautil.us/blog/the-big-problem-with-big-science-ventureslike-the-human-brain-project
http://nautil.us/blog/the-big-problem-with-big-science-ventureslike-the-human-brain-project
https://www.humanbrainproject.eu/-/hbp-technical-review-report-now-available
https://www.humanbrainproject.eu/-/hbp-technical-review-report-now-available
https://www.humanbrainproject.eu/-/hbp-technical-review-report-now-available

