
Superparamagnetic Maps: Self-organising
Low-Dimensional Embedding with

Superparamagnetic Clustering

Thomas Ott1, Robert Rohrkemper1, and Markus Christen2

1 ZHAW Zurich University of Applied Sciences, Switzerland
{ottt,roro}@zhaw.ch

2 Institute of Biomedical Ethics, University of Zurich, Switzerland
christen@ethik.uzh.ch

Abstract. Visualisation of high-dimensional data by means of a low-
dimensional embedding is an important technique in data analysis. We
present a novel approach to this problem based on a heuristic using super-
paramagnetic clustering. Our method can deal with nonlinear structures
since it is essentially local. Moreover, the nonparametric characteristics
and the robustness of the superparamagnetic self-organisation approach
allow discrimination between different clusters as well as between clus-
ters and background noise. Hence, cluster structures can be boosted in
the low-dimensional representation. The advantages provided by these
capabilities are illustrated by three applications.
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1 Introduction

Visualisation of data plays a key role in explorative data analysis since it makes
data structures easily accessible to vision, our most powerful sense. When dealing
with complex data sets, visualisation requires dimensionality reduction to display
meaningful structures of high-dimensional data in a low-dimensional space. The
classical approaches to dimensionality reduction, principal component analysis
PCA and multidimensional scaling MDS, aim to represent the data structure on
a linear subspace of the original data space. While PCA performs a projection
onto the most important axes of a subspace, i.e. the axes with maximal data
variance, the goal of MDS is to find a low-dimensional embedding that preserves
the interpoint distances. Although the essentially linear nature of these methods
is theoretically advantageous, the methods often perform poorly or can even fail
when applied to nonlinear data structures. Furthermore, for many real-world
applications, data vectors are not available. Instead, researchers are faced with
similarity or proximity data, in which the ordering is correct, but the exact
numbers are unreliable [1].

Various approaches exist to overcome these problems. The latter problem is
addressed by non-metric MDS [5]. This approach aims to prevent the ordering of
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the original proximities in the low-dimensional embedding, while the magnitudes
of the proximities can be rescaled by a monotonic transformation. In order to
overcome the problems of nonlinearites, specialised nonlinear methods such as
the Isomap algorithm [10] have been invented.
Isomap requires constructing a k nearest neighbour graph to represent the struc-
ture of a data manifold. This enables a more correct description of proximities
between points of a folded lower-dimensional manifold embedded into a higher-
dimensional space. Along with the publication of Isomap there has been some
debate about the distraction by noise, highlighting the importance to address
the noise issue.

In this contribution, we present a novel approach that is able to deal with
nonlinear structures in data space and that includes a mechanism to reduce the
distraction by noise. Our self self-organisation-based heuristic bears some simi-
larity with self-organising maps [4], but is based on superparamagnetic clustering
[2, 7, 8], a nonparametric clustering approach based on local spin interactions. It
takes advantage of a graph-based approach akin to Isomap. Moreover, it incorpo-
rates the non-metric MDS idea of applying a transformation to the proximities.
With reference to these origins, we will call our method (self-organising) super-
paramagnetic maps.

2 Self-organising Superparamagnetic Maps

To explain our idea, we recall the underlying goal of (non-metric) MDS. Given
a n× n symmetric matrix of pairwise proximities gij (with gii = 0), the goal is
to find a low-dimensional embedded representation of n points such that a cost
(or stress) function is minimised.

s =
∑

(i,j)

(dij − f(gij))2 (1)

is a possible simple choice (dij indicates the Euclidian distance in the p−dimensional
embedding space). The monotonic function f that is applied to the original ’dis-
tances’ gij does not change the order of the values and allows for rescaling. Non-
metric MDS is implemented as a two-step procedure: Starting with an arbitrary
point configuration and corresponding distances dij , iteratively, the configura-
tion is optimised for fixed f , and f is optimised for a fixed configuration. A
gradient descent method can be used to optimise the point configuration with
respect to s (and for fixed f). Gradient descent methods implement the idea
that two points are moved towards each other on their connecting line if s can
be minimised by decreasing the distance dij , or the points are moved apart on
their connecting line if s can be minimised by increasing dij , respectively.

We will adopt this idea of moving points along their connecting lines, al-
though – in contrast to non-metric MDS – we will not optimise f . Instead, we
will integrate information about the local data structure via a transformation
similar to f . For this, we use superparamagnetic clustering (SC) that is based
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on a principle of self-organization.
SC translates original proximities gij into a weighted graph with n nodes, each
holding a spin variable. The edges represent coupling strengths: the larger dij is,
the stronger the corresponding coupling Jij between node i and node j is. The
couplings are restricted to k nearest neighbour interactions. The resulting inho-
mogeneous spin system is treated in the formalism of the canonical ensemble.
Depending on the system temperature T , groups of aligned spins can emerge
that can be identified as data clusters. T gives rise to a clustering hierarchy:
For small values of T, the system is in the ferromagnetic phase, where spins
are likely to be aligned. In an intermediary T-range, a superparamagnetic phase
occurs: strongly coupled spins tend to be aligned, whereas weakly coupled spins
behave independently. A further increase of T generally leads to a continued
breaking up of these clusters into smaller clusters. For high T, the system enters
the paramagnetic phase where any order disappears and only singleton clusters
remain.
Clusters are identified by means of the pair correlation, Gij , which provides us
with a robust measure of the likelihood of two points belonging to the same
cluster structure or to the noisy background [8]. Instead of choosing a single
temperature T , we calculate a temperature average GT

ij along a pre-defined tem-
perature interval, yielding a well-balanced likelihood (see below).

In order to generate a low-dimensional representation of the data, we use GT
ij

instead of gij as input similarities. The map gij → GT
ij can be interpreted as a

nonlinear transformation, f , that boosts cluster structures in the original data.
In practice, the pair correlation GT

ij is calculated using a Markov chain Monte
Carlo MCMC procedure. This can be understood as a discrete time simulation
of the spin system, where the correlation of two spins is estimated as a time
average and the temperature average is incorporated by a slow increase of T
during this process.
The information about GT

ij is transferred to the low-dimensional data represen-
tation by connecting the time simulation with a data self-organisation principle:
starting from an arbitrary point configuration, two points are moved towards
each other if the corresponding spins are coupled and aligned, otherwise they are
moved apart. Over the course of time, we can observe a “steady state distance”
dij between point i and j which reflects GT

ij and hence the cluster structure of
the original data (since GT

ij must be viewed as a similarity measure, larger values
lead to smaller distances dij).

In the following sections, we will first describe SC briefly (details can be
found in [2, 8]), and then give a detailed description of our algorithm.

2.1 Superparamagnetic Clustering

For data clustering with SC, we map a data set onto a spin system as follows:
Each data item is represented by a Potts spin variable si with possible values
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in {1, ..., q = 10}3. Each spin is coupled to its k nearest neighbours4, where for
given proximity values gij = gji, the couplings between spins are determined
according to

Jij = Jji =
1
k

exp

(
−g2

ij

2a2

)
(2)

a is the average distance between neighbours. Each spin configuration s is asso-
ciated via the Boltzmann distribution with the probability

p(s) =
1
Z

exp(−H(s)/T ) (3)

with the Hamiltonian H(s) =
∑

(i,j) Jij(1−δsisj
) and the normalization constant

Z . The parameter T represents the system temperature. At a given T , the pair
correlation Gij =

∑
s p(s)δsisj

is calculated. SC uses Gij to identify the clusters
(we are mainly interested in Gij itself). Gij is approximately calculated by

Gij =
1
M

M∑
t=1

δst
is

t
j︸︷︷︸

Gij(t)

(4)

where the Swendsen-Wang algorithm [9] has been used to generate the series of
states.
In summary, SC is nonparametric clustering approach for which neither the
number of clusters nor the shape has to be predefined. Clusters are formed in a
robust self-organising process, which allows us to distinguish them from a noisy
background or halo [2, 8].

2.2 The Algorithm of Superparamagnetic Maps

A R2−embedding of a matrix of proximities gij is constructed by setting up the
superparamagnetic clustering framework and performing the following steps:

1. Choose a random point configuation (x0
1, ..., x0

n) with x0
i ∈ R2

2. Choose a random spin configuration s0

3. Set the temperature T = Tmin and ∆T (see below)
4. For T , calculate a new spin configuration st+1 (according to Swendsen-Wang)
5. Calulate the actual pair correlations Gij(t + 1) = δst+1

i st+1
j

6. For each pair of points, do:
– If Gij(t + 1) = 1 and Jij > 0 then

xt+1
i = xt

i + α · (xt
j − xt

i) (5)

xt+1
j = xt

j + α · (xt
i − xt

j) (6)

3 q can be chosen nearly arbitrarily and is not related to the number of clusters [2].
4 Again, the choice of k is largely uncritical. We used k = 10 as default value.
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– else

xt+1
i = xt

i + β · e−dt
ij (̇xt

i − xt
j) (7)

xt+1
j = xt

j + β · e−dt
ij (̇xt

j − xt
i) (8)

where dt
ij = |xt

i − xt
j |.

7. Set T = T + ∆T and go back to 4 as long as T < Tmax

The choice of parameters is as follows:

* For the temperature range [Tmin, Tmax] the optimal choice is the superpara-
magnetic phase since it provides information about the cluster structures.
This range can differ for each data set, but the differences are usually small.
The range could be estimated in advance by a mean-field calculation (similar
to the one presented in [8]). For simplicity, we chose a fixed range of [0, 0.1],
which is – according to our experience – a reasonable first approximation.

* ∆T is related to the number of Monte Carlo steps M : ∆T = [Tmin, Tmax]/M .
According to our experience, M = 150 gives stable results.

* 0 < α < 0.5 controls the attraction (speed) of two points whose spins are
correlated.

* 0 < β controls the repulsion (speed) of two points whose spins are uncorre-
lated.

* Superparamagnetic maps do not offer unique solutions, which highlights the
importance of the parameters involved. Experiments show that α and β
strongly determine the scaling of the final point configuration. α mainly
affects the intra-cluster distances and β mainly affects the inter-cluster dis-
tances. For all the experiments, we used the values α = 0.1 and β = 0.01.
This is a canonical choice that seems to balance inter-and intra-cluster dis-
tances.

* The additional factor e−dt
ij makes sure that the point configuration remains

bounded (other factors can be used as well).

3 Examples

3.1 The Noisy Ring Problem

In [6], a benchmark data set was introduced, showing two interlocked rings on
a noisy background (750 points in total, 250 points for each ring and the back-
ground, see Fig.1 a)). The problem cannot be solved by most clustering algo-
rithms [6]. In contrast, our approach is capable of generating a 2D image since
superparamagnetic clustering can solve the problem with ease (Fig.1 b)). The
scaling in this image, however, does not directly reflect the scaling in the origi-
nal data. The loop in one of the rings is interesting and is a consequence of the
dimensionality reduction.
Note that the approach includes the possibility of inherent noise cleaning. In
Fig.1 c) we took the results from superparamagnetic clustering into account,
which allows discrimination between clusters and background noise. Hence the
background noise can be subtracted from the image at the end.
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Fig. 1. a) Original data set with two rings on a noisy background b) Superparamagnetic
map solution c) Superparamagnetic maps offer inherent noise cleaning

3.2 The PCA-Mixer Problem

This data set consists of two Gaussian clusters with 200 points each and means
µ1 = (0, 0, 0) and µ2 = (0, 0, 2) (Fig 2 a). The standard deviations are σx

1 =
σx

2 = 4.5, σy
1 = σy

2 = 1.5 and σz
1 = σz

2 = 0.05. While the two clusters can clearly
be distinguished in 3D, they are invisible to PCA in 2D because the extension
in the x− and y− direction is larger than in z−direction (Fig 2 b). For SM, this
is no problem (Fig 2 c).

Fig. 2. a) Original data set with two clusters b) PCA solution c) Superparamagnetic
map

3.3 A Political Landscape

In our last example we use data from the ”smartvote” project5, an internet-based
tool that allows citizens in Switzerland to compare their own political opinions
with the opinions of candidates of national elections. As part of the project, all
political candidates in running for the last Swiss general elections were invited
to take part in a survey of about 70 questions, designed to elicit the candidates
political position on a broad range of issues (see [3] for details). We applied SM
to the candidates of the five largest Swiss parties from the canton of Berne: SVP
5 See http://www.smartvote.ch/index.php
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(Swiss People’s Party), SPS (Social-democrats), FDP (Free Democratic Party),
CVP (Christian-democrats) and the GPS (Green Party). The resulting political
landscape is shown in Fig. 3, where the Manhattan distance has been used to
calculate the input gij . The resulting map corresponds to the known structure
of the Swiss political landscape, although no external classification criteria along
’right’ or ’left’ politics had to be applied in the analysis.

Fig. 3. The political landscape of the canton of Berne including the 5 largest Swiss
parties (see text).

4 Discussion

We have introduced a novel algorithm for finding low-dimensional embedded rep-
resentations of a set of proximities gij , called self-organising superparamagentic
maps (SPM). The algorithm is based on a heuristic using superparamagnetic
clustering. The main idea is that clustering provides the possibility to incorpo-
rate crucial information about cluster structures in the original data. Using this
information, our superparamagentic maps generate a low-dimensional image of
the data. This approach has two main advantages. First, it is capable of bringing
out nonlinear structures that are invisible to classical techniques such as PCA.
Second, due to its robust nonparametric characteristics, it is able to distinguish
between clusters and background noise. On the downside, the procedure is more
time-consuming than other methods since it involves a spin system simulation.
However, applying SPM also yields a clustering of the original data without an
extra effort, providing an additional benefit.

Although the heuristic algorithm was successful in several applications, ques-
tions remain, regarding the theoretical understanding of superparamagnetic maps:
How can we quantify the role of the parameters α and β? How can the theoretical
connections to other methods such as (nonmetric) multidimensional scaling be
elaborated? Which other rules or clustering methods could be used to generate
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the low-dimensional representation? Can we also use the technique to find out
the true dimensionality of higher-dimensional data structures? Answers would
clarify why the heuristic works so well.

Acknowledgments. We thank Daniel Schwarz (Institute of Political Science
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