
A SPIN-BASED MEASURE OF THE COHERENCE OF BELIEF SYSTEMS

M. Christen1, T. Starostina2, D. Schwarz3, T. Ott2

1UFSP Ethik, University of Zurich, Switzerland (christen@ethik.uzh.ch)
2Institute of Applied Simulation, Zurich University of Applied Sciences (thomas.ott@zhaw.ch)

3Institute of Political Science, University of Bern, Switzerland
(daniel.schwarz@ipw.unibe.ch)

Abstract— In social science and humanities, co-
herence is an important but vaguely defined concept
used for understanding the structure of belief systems
and their physical representations like political par-
ties. In our contribution, we provide a specified defi-
nition and measure of coherence based on superpara-
magnetic clustering. The measure captures the intu-
ition, that coherence includes both a static component
(diversity of sub-groups in the system) and a dynamic
component (stability of the system under stress). We
apply our measure of coherence to data representing
the political beliefs of candidates in the Swiss national
elections of 2003 and 2007 and explain the split-up of
the Green party in 2004 as a result of lacking coher-
ence both in its static and dynamic component.

I. INTRODUCTION

The term ‘coherence’ has different interpretations
in scientific disciplines. Rigid definitions adapted to
specific problems are found in quantum physics and
signal processing. But the term is also used in social
sciences and humanities, where it describes the log-
ical and/or semantical coherence of the propositions
forming a belief system [1]. However, the concept of
coherence in these settings is mostly vaguely defined.
This lack of precision is dissatisfactory, because so-
cial groupings like political parties are accompanied
with the formation of belief systems representing the
shared opinions of party members on important issues
of social organization [2]. Therefore, the degree of
coherence of the opinions between the members of a
party is a component that may explain changes within
the party up to a culmination into its split.

This contribution outlines a quantitative notion of
coherence in three steps. First, we outline the main
intuitions that a measure of coherence should capture.
Second, we define our measure of coherence based on
superparamagnetic clustering and introduce its prop-
erties using toy data. Third, we apply our measure to
data representing the political beliefs of candidates in
the Swiss national elections of 2003 and 2007.

II. THE INTUITION OF COHERENCE

A belief system is a system of meaningful declara-
tive sentences regarding states of the world (proposi-
tions), which a individual of a group holds to be true.
In the following, we constrain ourselves to political
beliefs referring to states of societal organization (e.g.:
“Families pay too much taxes.”). These beliefs are
represented by persons. Belief systems that form the
ideological basis of a political party are considered to
have the property of coherence – i.e. the party mem-
bers share similar beliefs regarding propositions that
refer to the political organization of society at least
to some degree [3]. Factual incoherence is taken as
a possible explanation for tensions in political parties
that may culminate in a split of the party. What do we
mean when we say that a belief system is coherent?

To analyze coherence, usually ‘important beliefs’
within a system are identified by qualitative analysis
and their mutual logical consistency or semantic affin-
ity is checked. This method is not satisfactory, as the
selection process tends to be arbitrary and the analysis
delivers only a snapshot of the system’s structure. It
disregards the fact, that political parties and their un-
derlying belief systems are objects of changing con-
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Fig. 1. Conceptual outline of a coherence measure along two
dimensions.



ditions within society. Coherence has also a dynamic
component, reflected for example by the number of
persons that (virtually) ‘drop out’ when pressure in-
creases. Furthermore, the static component should
take into account the whole diversity of ‘sub groups’
of beliefs (represented by party members). A party
understood as a physical representation of a belief sys-
tem is therefore coherent along two dimensions:
1. Dynamic component: The stability of the party un-
der pressure.
2. Static component: The diversity of sub groups
within the party.

Coherence as being composed of two numeric val-
ues allows to identify several distinguished states (see
Fig. 1): Static and dynamic coherence may be low.
Such a party has a low inner structure and its mem-
bers tend to leave the party when pressure is high
(‘opportunists’). Low static and high dynamic coher-
ence may indicate a party with high degree of unity.
If static coherence is high and dynamic coherence is
low, the party has a high diversity but lacks a strong
and stable core. When static and dynamic coherence
are high, the party’s belief system has a structure that
makes the party vulnerable to a split, as several strong
sub-groups exist which are inherent stable (‘schisma-
zone’). We will now operationalize this intuition us-
ing the framework of superparamagnetic clustering.

III. THEORY: SPIN-BASED COHERENCE MEASURE

A. Superparamagnetic clustering

The superparamagnetic clustering algorithm [4]
SPC is inspired by a self-organization phenomenon
in magnetic spin systems: in an inhomogeneous spin
system, clusters of correlated spins can emerge, cor-
responding to groups of spins with strong couplings.
Upon an increase in temperature, i.e., an increase
in pressure on the system, these clusters decay into
smaller units in a cascade of (pseudo-)phase transi-
tions. For data clustering, we map a data set onto a
spin system. Each data item is represented by a Potts
spin variable si with possible values in {1, ..., q =
10}. Each spin is coupled to its k = 5 nearest neigh-
bors, where for given distances dij = dji between
spins the couplings are determined according to

Jij = Jji =
1
k

exp

(−d2
ij

2a2

)
. (1)

a is the average distance between neighbors. Each
spin configuration s is associated with the probability

p(s) =
1

Z(T )
exp

(−H(s)
T

)
(2)

with the Hamiltonian H(s) =
∑

(ij) Jij(1 − δsisj )
and the normalization constant Z(T ). The parameter
T represents the system temperature. At a given T ,
clusters are detected by means of the pair correlation
Gij =

∑
s p(s)δsisj , approximately calculated by a

Monte Carlo procedure [4]. If Gij > Θ = 0.7, then
si and sj belong to the same cluster.

Natural clusters, i.e., clusters with strong homoge-
neous couplings, become manifest in their stability
over a substantial range of T . Hence the T -stability
provides a natural measure of cluster ‘coherence’.
This fact is exploited by the sequential superparamag-
netic clustering algorithm SSC [5]. In this approach,
the most stable cluster is extracted and it, as well as
the residual set, is reclustered. The procedure is re-
peated, providing a natural dendrogram with a cluster
hierarchy. Details can be found in [5].

The couplings between spins and hence the cluster-
ing results critically depend on the distances dij be-
tween the data points. The choice of the distance func-
tion is guided by the problem type one wants to solve
and usually relies on the methodology of the scientific
discipline in which one operates. It needs not neces-
sarily fulfil all axioms of a mathematical distance.

B. Defining coherence

Using the framework of SPC and SSC for defining
the coherence of belief systems requires in a fist step a
definition of the data points and their mutual distance.
For n data points, the application of the distance mea-
sure leads to a n × n distance matrix that serves as
input for the clustering algorithm.

The dynamic component of coherence Cdynamic is
calculated in the SPC framework. It is evaluated as
the disintegration of the largest cluster for increasing
T (this involves the assumption that the largest cluster
represents the ‘core’ of the belief system that disin-
tegrates under stress). Let CS(t) be the size of the
largest cluster for T = t. We assume CS(0) = n and
then calculate CS(t) stepwise for t = ∆T, 2∆T, . . .
until after the l-th step we have CS(l∆T ) = 1, i.e.
the large cluster has vanished completely. In this way
we calculate a step-function approximation of the de-
cay curve, whose integral serves as a measure for dy-
namic coherence. To make the integral comparable, it
is normalized with n and l, leading to the definition

Cdynamic =
l−1∑

i=0

CS(i∆T ) + CS((i + 1)∆T )
2nl

(3)

Cdynamic is close to 1 for a cluster that remains in-
tact for a long time and then disintegrates rapidly for
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Fig. 2. Illustration of the network distance. a) refers to the
example ‘blue’ and b) to the example ‘green’ (toy data, see
below), the ovals are scaled with cluster size.

high T , whereas Cdynamic is close to 0 for a cluster
that disintegrates rapidly in which only a small core is
stable for a longer time.

The static component of coherence Cstatic is calcu-
lated using SSC that results in a dendrogram in which
the size of each of the k sub-cluster is evaluated. We
consider the largest cluster c̄ as the ‘core’ of the sys-
tem. Cdynamic is calculated as the sum of the distance
of each cluster ci from the largest cluster in the net-
work weighted with its size |ci|. The ‘network dis-
tance’ di is the number of bifurcation points between
c̄ and ci (see Fig. 2). Both the maximal network dis-
tance dmax as well as the size of the largest cluster
serve as normalization factors, leading to the defini-
tion

Cstatic =
k∑

i=1

di

dmax
· |ci|
|c̄| (4)

Remind that Cstatic is not normalized to 1. Its value
is 0, if SSC does not reveal any sub-cluster and it is
close to 0 if only small clusters emerge. However,
many large clusters that have a large network distance
from the largest cluster increase Cstatic. We will now
calculate both the static and the dynamic component
of coherence for toy data.

C. Coherence in toy systems

To exemplify the measure, we will use toy data
where beliefs are represented as points in a 2D space
and the distance is Euklidean (the colors refer to the
display of the results in Fig. 3):
• Red: A homogeneous 2D lattice point cluster: As
expected, this cluster remains stable for a large T in-
terval and then collapses fast. Hence Cdynamic is close
to 1 and Cstatic is 0, as no sub-clusters are present.
• Orange: A large homogeneous 2D lattice point clus-
ter with a small homogeneous 2D lattice point cluster

close to it. As expected, the small cluster splits of
quite soon for increasing T whereas the large, remain-
ing cluster remains stable for a large T interval until
it collapses. Hence Cdynamic is still close to 1 and
Cstatic is close to 0, as only one sub-cluster is present.
• Yellow: Two 2D lattice point clusters of the same
size: As expected, they split pretty soon and each of
them remains stable for a large T interval (only one of
them is tracked). Hence, Cdynamic is close to 0.5 and
Cstatic is large, as there are two large clusters present.
• Green: A small 2D lattice point cluster embedded in
noise (points with randomly chosen x and y values).
The noise drops off fast, whereas the small cluster re-
mains stable for a large T interval. Hence, Cdynamic

is close to 0 and Cstatic is small as well, as most noisy
points find themselves in a large (unstable) cluster.
• Blue: A large 2D lattice point cluster with several
smaller 2D lattice point cluster in its neighborhood
with decreasing distance that drop off sequentially.
Both Cdynamic and Cstatic are rather large.
• Light blue: A Gaussian cluster (points with nor-
mal distributed coordinates), where the points drop off
continuously for increasing T . Cdynamic is close to
0.5 and Cstatic is 0, as there are no sub-clusters.

Remind that two examples lie in the ‘schisma-
zone’: the example ‘yellow’ with two clusters of equal
size and the example ‘blue’ where half of the points
are again organized in several stable sub-clusters.
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Fig. 3. Decay diagram for calculating the dynamic coherence
(a) and static and dynamic coherence for toy data.



IV. APPLICATION: COHERENCE OF PARTIES

A. Data description

Our data originate from the Smartvote project [6].
As part of the project, political candidates are invited
to answer a questionnaire designed to elicit the candi-
dates political position on various issues. The project
currently operates a Web site where users are also in-
vited to fill out a questionnaire. Based upon the users
answers, Smartvote determines which candidate most
closely matches the views the user has expressed.

For our project, we investigated the answers of
candidates of the national elections 2003 and 2007
of the five largest Swiss parties: SVP (national-
conservative), SPS (social democrats), FDP (liberals),
CVP (christian democrats) and GPS (Green party).
Return was higher in 2007 (between 82-98% of all
candidates answered the questionnaire) than 2003
(46-78%). The questionnaire consisted of 70 (2003)
resp. 73 (2007) questions with multiple-choice an-
swers (strongly agree, agree, disagree, strongly dis-
agree). The distance between two candidates X and
Y of the same party is calculated as follows: the pos-
sible answers are coded with 1 to 4. If both agreed to
a question, the resulting value is 0, whereas the max-
imal value is 3 (strongly agree vs. strongly disagree,
|1−4|). The sum of the absolute values for each ques-
tion normalized with the number of answered ques-
tions is the distance between X and Y . The mutual
comparison between all candidates of a party in 2003
or 2007 results in a distance matrix.

B. Coherence of political parties in Switzerland

Applying our measure of both Cdynamic and Cstatic

reveals the following result (see Fig. 4):
• FDP has a large dynamic coherence and low di-
versity. This is in some disagreement with the self-
perception of the party.
• CVP is the less stablest and most diverse party,
which is in some agreement with the general percep-
tion of this party.
• SPS is less stable and quite diverse and has lost both
stability and diversity in 2007 compared to 2003.
• SVP was quite diverse in 2003, as SSC revealed two
large blocks that disappeared in 2007.
• GPS was highly diverse in 2003 but consisted of
several stable sub-clusters – i.e. was the only party
located in the ‘schisma-zone’.

This analysis demonstrates the strengths and weak-
ness of a quantitative approach towards coherence:
The method reveals that the GPS was in high danger
of splitting in 2003 – which indeed was the case in
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Fig. 4. The coherence of the largest Swiss parties in 2003 (filled
dot) and 2007. Yellow: SVP, red: SPS, blue: FDP, black:
CVP, green: GPS.

2004, when the Green Liberals were formed. In 2007,
the GPS gained coherence doe to this split. However,
the method was not able to predict the split of the
SVP after 2007, although one has to add that a much
smaller fraction of party members was affected by this
split compared to the green voters potential.

V. CONCLUSION AND OUTLOOK

We are aware that this analysis requires further in-
vestigations. First, differences in methodology be-
tween the questionnaires in 2003 and 2007, as well as
the larger response rate in 2007 should be considered.
Furthermore, we investigate alternatives to calculate
Cdynamic and Cstatic. But we belief that this novel
approach for defining and quantifying the coherence
of belief systems helps social science and humanities
to understand important aspects of social change and
its underlying beliefs and values.
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mann, 1980 (first issue: 1922).

[3] D. Braun. Theorien rationalen Handelns in der Politikwis-
senschaft, Oplade: Leske & Budrich, 1999.

[4] M. Blatt, S. Wiseman, E. Domany. Superparamagnetic clus-
tering of data. In Phys. Rev. Lett. 76, pp. 3251–4, 1996.

[5] T. Ott, A. Kern, W.-H. Steeb, R. Stoop. Sequential cluster-
ing: tracking down the most natural clusters. In J. Stat. Mech.,
P11014, 2005.

[6] J. Thurman, U. Gasser. Three Case Studies from Switzer-
land: Smartvote. In Berkman Center Research Publication No.
2009-03.3, 2009.


