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Abstract—When a system becomes unstable or noise
becomes excessive, often regulations of the form of lim-
iters (barriers obstructing an excursion into undesired di-
rections) are imposed. It is hoped that by the influence of
this element, the system can be calmed and its behavior op-
timized. We consider a simple noisy nonlinear economics
model that self-organizes towards criticality. We demon-
strate that the inherent effect of limiters is the emergence of
stable cycles, and that the limiters need to be implemented
with care in order to obtain an optimized system response.
In particular, implementing the limiter at maximal system
response is generally a suboptimal solution. We find that
the system average is generally optimized by controlling a
period-one cycle. Furthermore, we provide optimality con-
ditions for the case that the control is restricted to be on the
natural system behavior.

1. Introduction

Economic booms and bouts affect modern societies thor-
oughly, with a direct impact on the individual’s biogra-
phies. In western economies, cycles have been an ubiqui-
tous (undesired) observation. Among the most remarkable,
the Kitchin cycles emerged [1]. Until the 1970s, as the
legacy of Keynes [2], cycles were regarded as primarily due
to variations in demand (company investments and house-
hold consumptions). As a consequence, economic analysis
focused on monetary and fiscal measures to offset demand
shocks. During the 1970s, it became obvious that stabi-
lization policies based on this theory failed. Shocks on the
supply side, in the form of rising oil prices and declining
productivity growth, emerged to be equally crucial for the
generation of cycles. In a paper published in 1982, Kyd-
land and Prescott [3] offered new approaches to the control
of macroeconomic developments. One of their conclusions
was that the control should be kept constant throughout a
cycle, in order to minimize negative effects.

Cycles and crises may be inherent to the principles on
which our economics are based. However, if they could
be predicted and their origin understood, they might be en-
gineered to take a softer course. An extreme form of this
approach was taken in the centrally planned economies in
the former socialist countries. In order to deal with this
problem in democratic societies, it is necessary to be able
to communicate a sufficiently simple optimality policy. For
obtaining it, the understanding of the response to control
in simple economic models may provide important guide-

lines [4]. The prediction problem of economics is closely
related to the one in chaotic processes, where strategies to
overcome it have been developed. Although the question
to which extent real economies can be classified as chaotic
can readily be disputed, low-dimensional chaotic models
yield insight into the mechanisms that govern the response
of economics to control policies. Interestingly, already in
early implementations of the optimal control program, it
was found that control mechanisms themselves may induce
chaotic behavior [5] and render optimal control impossi-
ble. As a general mechanism inherent in many of these ex-
amples, chaos is induced by a preference function that de-
pends on past experience. This delay mechanism naturally
makes a dynamical system infinite-dimensional, which has
the tendency of resulting in a chaotic behavior.

In our contribution, we identify a general principle that
naturally generates cycles in economical models. We then
demonstrate a detailed mechanism of how cycles are addi-
tionally introduced when applying even the simplest con-
trol strategies. The obtained insights add a new facet to the
control advice by Kydland and Prescott [3]: The optimal
system behavior is not obtained by controlling on the natu-
ral cycle, but is achieved by a controlled period-one orbit.
This not only requires a control policy that is kept fixed
through time. To acquire the period-one state, a strong ini-
tial control effort is generally required, and control must
permanently be maintained.

2. A simple view on economics

When exponential growth is possible, real economies have
little problems. It is mostly when the limits of the eco-
nomic systems are reached that their prediction becomes
difficult. From the mathematical point of view, this is due
to the nonlinearities that are required to keep the system
within the boundaries. Economies naturally tend towards
the recruitment of all available resources. This drives them
towards the boundaries and fosters a natural tendency of
the system to evolve towards maximally developed nonlin-
earities. We thus can describe economics in a simplified
and abstract way in terms of a parameter indicating the de-
gree of globalization of resources (nonlinearity parameter
a), and a dynamical parameter x expressing a generalized
consumption. The evolution of this simple model of eco-
nomics takes place on three time scales: a slow one which
modifies parameter a, an intermediate-term variable x that
is assumed to be deterministic, and momentary perturba-
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tions that are included in x in the form of noise. The under-
lying deterministic system is defined by the property that
for states far from full exploitation of the resources, the
consumption can grow almost linearly. Close to maximal
exploitation, the next consumption is required to be small,
to let the system recover.

A most simple and generic setting to model this dynam-
ics is provided by the iterated logistic map,

f : [0, 1]→ [0, 1] : xn+1 = axn(1 − xn). (1)

The above-mentioned self-organization towards an ever
growing exploitation of the phase-space [0, 1], is reflected
in a slow increase of the order parameter a towards a = 4.
If a is increased further, large-scale erratic behavior sets
in, as the process is no longer confined to the previously
invariant unit interval. After a potentially chaotic tran-
sient, the system settles in a new area of stability, where
the same scenario takes place anew, starting at rescaled
small a. We believe that in particular the effects by techni-
cal shocks may adequately be described in this framework.
On its way towards the globalization of resources (a→ 4),
the system undergoes a continued period-doubling bifur-
cation route, where a stable period-one solution is trans-
formed, over a cascade of stable orbits of increasing orders
2n (where n = 2, 3, 4 . . .), into a chaotic solution (Feigen-
baum period-doubling cascade [6]). Using renormalization
theory, it can be shown that in order to reach the next bifur-
cation, a progresses geometrically, with factor q ≈ 1/4.67.
The properties exhibited by the logistic map are character-
istic for a large universality class of unimodal maps. Our
model is thus characteristic for the whole class of systems
that are subject to such a process of self-organization.

3. Effects of simple control

Whereas the usage of the logistic map as a simple, yet
generic, model of macroscopic economics seems reason-
ably motivated, in real economics the demand x is charac-
terized by strong short-term fluctuations, often of local or
external origin. Whereas in the case of small a such per-
turbations are stabilized by the system itself, for larger a
they lead to ever more long-lived erratic excursions. To in-
corporate these fluctuations within our model, we perturb
x by multiplicative noise, for simplicity chosen uniformly
distributed over a finite interval. The size of the noise sam-
pling interval, in the following denoted by str, is a measure
for the amount of noise. To render economics predictable
under these circumstances, it is natural to apply a control
mechanism to x. For this, a sufficiently simple control tool
is needed, whose properties are well understood and which
does not additionally complicate the behavior of the sys-
tem. As a natural candidate, control by means of a limiting
value on x that the system is not allowed to cross, can be –
and in reality often is – imposed.

Recently, exact results for this so-called hard limiter con-
trol (HLC) have been obtained. For reasons of conve-

nience, we will expose their nontrivial essence. By in-
troducing a limiter, orbits that sojourn into the forbidden
area are eliminated (see Fig. 1). Modified in this way,
the system tends to replace previously chaotic with peri-
odic behavior. By gradually restricting the phase-space, it
is possible to transfer initially chaotic into ever simpler pe-
riodic motion. When the modified system is tuned in such
a way that the control mechanism is only marginally effec-
tive, the controlled orbit runs in the close neighborhood of
an orbit of the uncontrolled system. In a series of papers
[7, 8, 9], this control approach was successfully applied in
different experimental settings, and its properties were fully
analyzed.
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Figure 1: HLC for time-continuous and discrete dynam-
ical systems. Limiter positions are indicated by dashed
lines. a) HLC changes chaotic into period-one behavior
(modified from [7]). b) HLC for the noisy logistic map.
Placement of the limiter around the maximum of the map
preserves the natural noisy period-two orbit (red). For
lower placement, a modified period-one behavior is ob-
tained (green).

Flat-topped maps are the proper paradigm for studying
HLC [8, 9]. They are obtained by replacing the peak region
of a map by a horizontal line at height h, which limits the
phase-space to {x | x < h}. A detailed analysis shows that
the class of flat-topped maps shares a number of remark-
able topological and metric features [8]. It is observed that
as a function of the control strength, the controlled map
undergoes a period-doubling bifurcation cascade, leading
to long, seemingly chaotic, orbits. However, in this system,
no chaotic orbits are allowed. By ergodicity, each orbit will
eventually pass by the control segment, from where on the
orbit is periodic, as landing on the control segment entrains
a zero slope

Period-doubling cascades are characterized by two con-
stants, α and δ [6]. The constant α describes the asymp-
totic scaling of the fork openings of subsequent period dou-
blings, whereas δ represents the scaling of the intervals of
period 2n to that of period 2n−1 near the period-doubling
accumulation point, i.e. at the transition to chaos. The
observed period-doubling bifurcation cascades are typical
for flat-topped maps (or, the control method) and differ in
scaling from the Feigenbaum case. The ratio of the bifur-
cation fork openings within forks of the same periodicity
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now depends on the derivative of the map, and is therefore
non-universal.

In applications, the time required to arrive in a close
neighborhood of the target orbit is an important character-
istic of the control method. With the classical methods, un-
stable periodic orbits can only be controlled when the sys-
tem is already in the vicinity of the target orbit. As the ini-
tial transients can become very long, algorithms have been
designed to speed up this process [10]. HLC renders tar-
geting algorithms obsolete, as the control-time problem is
equivalent to a strange repeller-escape (control is achieved,
as soon as the orbit lands on the flat top). As a consequence,
the convergence onto the selected orbit is exponential [8].

These properties of 1-d HLC systems fully describe the
effects generated by the limiter control. Due to the control,
only periodic behavior is possible. Period doubling cas-
cades that have a superexponential scaling δ−1(n) ∼ 2−2n

[8] and therefore are not of the Feigenbaum type, emerge
in the control space. The convergence onto controlled or-
bits is exponential. Controlled orbits are unmodified origi-
nal orbits only at bifurcation points of the controlled map.
For generic one-parameter families of maps, all bifurcation
points are regular, isolated in a compact space, and as a
consequence, have zero Lebesgue measure. These proper-
ties substantially modify the uncontrolled system behavior.

4. Natural vs. control-induced cycles; control results

It is a wide-spread misunderstanding that control meth-
ods only apply to inherently unstable systems. Unmodified
control methods can be used to control on unstable orbits of
inherently stable systems. In either case, the control should
be only minimally active. In the noise-free case, the con-
trol is optimal, if after an initial phase the controller does no
longer experience any noticeable strain. This is the case at
the bifurcation points of the controlled map. Questions that
remain are whether a corresponding statement also holds
true for noisy systems, and on which of the orbits should
be controlled.

As the economic system evolves, it will be in a noisy,
but stable period-one state. This is a convenient economic
behavior. Predictions and forecasts are simple to make. To
reduce the noise, the limiter will be placed around the pe-
riodic point. As the system turns into a period-two, the
question emerges whether to maintain the unstable period-
one cycle, or whether to move on to the stable period-two.
We argue that maintaining the period-one cycle is prefer-
eable, from most economics aspects. The predictions of
these systems are simpler, and lead to simpler economic
policies. Many economic indicators (taxes, budgets, etc.)
are evaluated over a period of one year. Moreover, the
period-one x-average will be generally higher than that of
the controlled period-two, as well as of any other higher-
order cycle. This appears counter-intuitive, since the nat-
ural tendency to relax to the ”natural” system state has to
be compensated for by the control. From the convexity of

the nonlinear map, however, it is easy to prove that our
claim holds. To change a natural higher-order periodic
behavior into a period-one state generally requires a rela-
tively strong initial control action. That this is beneficial
appears to be counter-intuitive again, and needs to be com-
municated in an accompanied economic policy statement.
When the time scale over which the external parameter a
varies becomes comparable to the cycle’s wavelength, the
optimality of the aforedescribed control may break down,
as continued adjustments need to be made in order to fol-
low the changing location of the period-one. In this case,
it may be preferential to control on a natural cycle. The
most obvious control goal would then be to control the sys-
tem as closely as possible along the underlying noise-free
system. In the numerical control results presented below,
we deal with both control goals. To measure the efficacy in
performing control on natural cycles, we define the control
distance as the absolute difference between the “natural”
underlying solution and the controlled solution, per step.

Control in the stable system regime: For our numer-
ical investigations, we restrict ourselves to the control on
superstable orbits (by choosing a = 2 and a = 1 + 51/2, for
the periods one and two, respectively), and apply the con-
trol at the cycle maximum. As a measure of efficacy, we
calculate the average deviation of the noisy controlled rela-
tive to the noise-free system, denoted by dev, as a function
of the noise and of the limiter position h. This seems to
reflect best the natural tendency of the system to return into
the vicinity of the uncontrolled noise-free system once the
control is relaxed. We find that for zero noise, dev(h) is a
piecewise linear function (shown in Fig. 2a for the period-
one orbit), where the nonzero slope, associated with h be-
low the maximum of the function f , is determined by the
periodicity and by the amount of nonlinearity expressed by
a. For nonzero noise, the formerly piecewise linear func-
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Figure 2: Dependence of dev on the control point h (sum-
mation over 500 orbit points, period-one orbit). a) For zero
noise, a piecewise linear function with a minimum (= op-
timal noise-free control point) emerges. b) In the presence
of noise (str = 0.02), the function becomes nonlinear, with
a nonzero minimum at the optimal noise-free control point.

tion becomes nonlinear, with the minimum being situated
at the optimal control point of the noise-free system (see
Fig. 2b). For noise strengths str < 0.1, which we con-
sider to be a realistic case, the deviation is a linear func-
tion of str. The control on the superstable period-two orbit
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yields a similar picture. Control is lost, when due to the
noise, interchange of orbit points occurs. This is the reason
why in the presence of a substantial amount of noise, only
low-order cycles can be controlled. For a period-four orbit,
already a noise level of str > 0.01 leads to control loss. In-
terestingly, the function dev(h, str) scales linearly with str
(identical curves emerge, if h and dev are replaced by h/str
and dev/str, respectively). As a rule of thumb, by means
of optimal control, the deviation can be reduced by a factor
of ∼ 0.5.

Control in the chaotic system regime: To investigate
the control in the chaotic regime, we focus on the fully de-
veloped logistic map (a = 4). To control on true system
orbits, the control point must be chosen at locations cor-
responding to the bifurcation points, whose location can
be evaluated analytically [8]. Without control, chaos pre-
vents the system from staying on a given cycle. As a con-
sequence, the efficacy of the control is measured as the dif-
ference between controlled noise-free and controlled noisy
systems. In order to obtain a period-one orbit in the noise-
free case, the limiter was adjusted to h = 0.75. Experiments
show that in the presence of noise, the optimal control point
moves away from the noise-free optimal control point. This
is in contrast to the behavior in the stable regime, and may
help to distinguish between the two cases. The displace-
ment δh is a linear function of the noise strength, as is the
deviation dev measured at the optimal shifted control point.
For period 2, the optimal control point’s displacement and
the minimal deviation are again linear in the noise strength
(see Fig. 3a,b). The shift of the control point extends over
an interval of more than δh = 0.01, and therefore is of a
size comparable to the added noise.
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Figure 3: Results for the chaotic regime, where an unstable
period-two orbit is controlled. a) Linear dependence of the
optimal control point displacement δh on the noise strength
str. b) Linear dependence of dev at the optimal control
point, on the noise strength str.

5. Conclusions

Control mechanisms of limiter type are common in eco-
nomics. This control, however, inherently generates super-
stable system behavior, whether the underlying behavior be
periodic or chaotic. A priori, a frequent change of the po-
sition of the limiter might appear to be a suitable strategy
in order to compensate for the amplified or newly created
cyclic behavior. This strategy, however, will only result in

ever more erratic system behavior. Our analysis shows that
it is advantageous to keep the limiter fixed, adjusting it only
over time-scales where the system parameter a changes no-
ticeably. In this way, reliable cycles of smaller periodicity
will emerge. Among these cycles, period-one appears to be
the optimal one, from most economic points of view. To re-
cruit this state, a strong initial intervention is necessary and
the control must be permanent. In discussions of real eco-
nomics, these properties will be natural arguments against
the proposed control. To overcome such arguments, a suffi-
ciently simple control policy must be formulated in demo-
cratic societies. The discussed framework may provide the
basis for the formulation of a control policy to attain eco-
nomic optimality.

We emphasize that short-term cycles emerge on all levels
of economics. It has become, e.g., a common observation,
that the demands for certain professionals (in central Eu-
rope in particular for teachers) undergo large fluctuations,
from one year to another. In one year, severe problems
are encountered in recruiting a sufficient number, so that
the professional requirements have to be lowered, whereas
in the next year, there is an excess supply. We propose
to interpret this as the signature of an economy that has
moved out of period-one behavior. From the teaching qual-
ity as well as from the individual’s biographies points of
view, the occurrence of this effect should be prevented or
smoothened. Our approach offers a perspective for under-
standing, studying and, potentially also engineering, such
phenomena.
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