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Conventional approaches to detect patterns in neuronal firing are template based. As the pattern length
increases, the number of trial patterns to be tested leads to strongly divergent computational costs. To remedy
this problem, we propose a different statistical approach, based on the correlation integral. Applications of our
method to model and neuronal data demonstrate its reliability, even in the presence of noise. Additionally, our
investigation provides interesting insights into the nature of correlation-integral anomalies.
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I. INTRODUCTION

Biological neural systems can be viewed as an alternative
information processing paradigm, that often proves far more
efficient than conventional signal processing. Although the
underlying structures(neurons and their connectivity) can be
accurately modeled by electronic circuits[1], the principles
according to which they process information are not well
understood. Growing evidence, however, suggests that neu-
ronal circuits work according to distributed parallel process-
ing principles, and that neuronal information encoding dif-
fers from that of traditional signal processing[2].

In neural information processing systems, activity is
manifested as spikes. Temporal recordings of firing events
provide interspike interval(ISI) series. It is expected that
aspects of the processed information are encoded in the form
of structures contained in the ISI series. Patterns, however,
are not the only method of neural information encoding.
Whereas some neurons indeed specialize in firing in terms of
patterns(due to their morphology, or their embedding in the
network[3]), others prefer firing randomly(which has led to
the Poissonian firing assumption[4]). For a given neuron, its
firing characteristics appears to be stable in time. Recently, a
computational model has been proposed wherein this coex-
istence proves advantageous[5].

Consequently, the detection of pattern occurrences can be
considered a fundamental step in the analysis of the neural
computation. Patterns are defined as those parts of the ISI
series that repeat significantly more often than they would in
a randomized series based upon the identical distribution[6].
The standard approach to the identification of patterns is to
systematically predefine pattern templates and to count their
frequency of occurrence(template-based methods[7,8]). De-
fining the length of a pattern as the number of the ISI’s
involved, only patterns of lengths from 1 to 5 have been
reported [9,10]. Template-based methods suffer from two
fundamental difficulties. First, the detection relies on the set

of pre-chosen templates. As the patterns area priori un-
known, large template sets are required to include all poten-
tial patterns to be tested against. Second, due to the omni-
present noise, patterns cannot be expected to repeat perfectly,
which implies having to choose a tolerance for template
matching. Adopted tolerances range from fractions of one
[11] to a few milliseconds[8], demonstrating the difficulty in
determining the required accuracy. As an illustration, let
hx1,x2, . . . ,xLj, wherexi .0, be an ISI series withxmin denot-
ing the smallest andxmax the largest element. Templates have
the form st1± t̃ ,t2± t̃ , . . . ,tk± t̃d, with template lengthk and
tolerancet̃. The number of operations required for unbiased
testing can then be estimated as follows. An optimal grid
width of Dt=2t̃ yields N= dxmax−xmin/Dte values to test, and
Nk templates to match. Moreover, an unbiased template
analysis requires choosing a setT of distinct tolerances. This
leads to,kTsL−k+1dNk numbers that need to be compared.

It is evident that an efficient template analysis can only be
performed for smallk, which may explain the short pattern
lengths reported in the literature. For an extended investiga-
tion, tools that detect the presence of patterns, find elements
ti composing the templates and estimatek are desired. His-
tograms and correlation functions fall short as reliable indi-
cators. We propose to use the correlation integral as a purely
statistical, bias-free tool to detect the presence of patterns.
This approach is computationally inexpensive(number of
pairs of numbers to compare,kN2) and significantly reduces
the set of potential templates to be tested. The underlying
algorithm is well known and optimized implementations are
widely used. In addition, our contribution sheds new light on
widely observed anomalies of the correlation integral that are
generally not well understood.

II. CORRELATION INTEGRAL METHOD

The correlation integral was originally designed for the
determination of the correlation dimension[12,13]. The pur-
pose of our paper is to explore its potential for the detection
of patterns in neuronal spike trains. First, we briefly intro-
duce the correlation integral, and elucidate its ability to de-
tect clusters. Second, we address its application to ISI pat-
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terns. Third, we evaluate to what extent the method is helpful
when determining ISI pattern lengths.

Consider an arbitrary scalar time series of measurements
hxij, i =1, . . . ,L, whereL denotes the length of the time se-
ries. From these data, embedded pointsjk

smd are constructed:
jk

smd=hxk,xk+1, . . . ,xk+sm−1dj, wherem is called the embedding
dimension. Thiscoordinate-delay constructionis standard in
nonlinear dynamics. Its purpose is to reconstruct the com-
plete underlying(in general: high-dimensional) dynamics
from partial, generally scalar, measurements[14–19]. From
the embedded data, thecorrelation integralis calculated as

CN
smdsed =

1

NsN − 1doiÞ j

use − iji
smd − j j

smdid,

whereusxd is the Heaviside function[usxd=0 for xø0 and
usxd=1 for x.0] and N is the number of embedded points
sNøL−m+1d. Different norms can be used to compute
CN

smdsed. In most cases, the maximum norm is advantageous,
as this choice speeds up the computation, and allows an easy
comparison of results obtained for different embedding di-
mensions. Degeneracies introduced by this choice are re-
moved by adding a small amount of noise. Alternatively, the
Euclidean norm is often used.

The connection betweenCN
smdsed and patterns is surpris-

ingly simple: For the calculation ofCN
smdsed, an embedded

point j0
smd is chosen at random. Then, the number of points

entering itse neighborhood is evaluated, ase is enlarged. If
the point belongs to a cluster, many points will join thee
neighborhood. Once the cluster size is reached, fewer points
are recruited, leading to a slower increase ofCN

smdsed. When,
as required by the correlation integral, an average over dif-
ferent points is taken, pieces of fast increase ofCN

smdsed inter-
change with pieces of slow increase. This leads to a
staircaselike graph of the correlation integral. The denser the
clustered regions, the more prominent the stepwise struc-
tures. PlottingCN

smdsed on a log-log scale not only preserves
these structures but enhances the representation of small-
scale steps.

To show the emergence of steps, we constructed a series
from a repetition of the sequence{1,2,4}, where the se-
quence numbers can be interpreted as ISI durations measured
in ms. The embedding of this series form=2 leads to three
clusters, represented by the pointsP1=h1,2j, P2=h2,4j, and
P3=h4,1j. Calculating the correlation integral and plotting
logCN

smdsed against loge does indeed lead to a clean-cut stair-
case structure[Fig. 1(a)]. Throughout the paper we use loga-

rithms to the base 2 for our numerical results.
In practical applications of the method, the steps in the

log-log plot generally become less salient due to influences
that will be discussed below. In this case, the difference quo-
tient D logCN

smdseid : = logCN
smdsei+1d−logCN

smdseid, which ap-
proximates the derivative of the correlation integral, is a
more sensitive indicator of clusters. For smalle neighbor-
hoods, the log-log plot is affected by strong statistical fluc-
tuations. These regions, however, are easily identified and
excluded from the analysis.

III. SMEARED LOG-LOG STEPS

In natural systems, the steps are smeared. We investigated
three causes. The first is noise, which is naturally present in
measured ISI series. This can be modeled by adding uniform
noise to our ISI seriesh1,2,4,1,2,4. . .j. Added noise causes
the point clusters in the embedding space to become more
dispersed. Consequently the effects of small amounts of
noise will only be visible at the step boundaries. As the noise
increases, its effects penetrate towards the centers. This is
visible in Fig. 1(b) where the horizontal parts of the steps
have become narrower, and the vertical parts less steep.

Second, the generator of the ISI series could be chaotic in
nature. In this case, a distance from a given unstable periodic
orbit grows atetl, where t denotes the time andl is the
(positive) Lyapunov exponent of the orbit. This implies that
the repetition of any sequence is less likely the largerl.
Moreover, because the decay from the unstable orbit is de-
terministic, additional(pseudo) orbits will emerge, increas-
ing the number of steps. Recently, a simple chaos control
method has been found, that has the potential of being imple-
mented in biological neural networks[20,21]. We can simu-
late this situation with a simple series composed as follows:
With probability p1=0.5 we take the whole sequence
{1,2,4}, with p2=0.31 the subsequence{1,2}, and with p3
=0.19 the subsequence{1} (this choice leads top1/p2
.p2/p3). The results[Fig. 1(c)] show five instead of three
steps, indicating that additional orbits have been generated.

A third option is that patterns occur within a noisy back-
ground. In this case, the pattern only appears intermittently.
As a consequence, the fraction of points belonging to clus-
ters in the embedding space is diminished, implying that the
steps in the log-log plot become less prominent. To simulate
this situation, we took with probabilityp=0.5 the sequence
{1,2,4}, otherwise three interspike intervals were randomly
drawn from the intervals0,4g. The results[Fig. 1(d)] show
that the number of steps indeed remains unaffected, but the

FIG. 1. Log-log plot steps from different ISI models(m=2; Euclidean norm; log; log2). (a) low-noise case(noise±1%; solid line in all
four plots), (b) noise ±10%,(c) unstable periodic orbits,(d) patterns within noisy background.
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steps themselves have become much less pronounced.
In natural systems, more than one pattern may be present.

To analyze this situation, we assembled a series by randomly
choosing among sequences{2,6,10}, {8,2,1}, {2,7,5}. To
contrast this with random firing, we assembled a second se-
ries by randomly selecting intervals from the concatenated
set{2,6,10,8,2,1,2,7,5}. Thus both series are based on iden-
tical probability distributions. Our analysis[Figs. 2(a) and

2(b), respectively] shows that steps(peaks in the quotient
plot) emerge only if patterns are present. Thus we conclude
that our method is able to reliably indicate the presence of
patterns.

IV. PATTERN LENGTH ESTIMATION

Once the presence of patterns has been established, an
estimate of the pattern length can be given. That this is pos-
sible is motivated by the following argument. Using the
maximum norm, the distance between two points is defined
as the largest coordinate difference. An increase of the em-
bedding dimension yields ever more coordinate pairs, caus-
ing the presence of a particularly large difference to domi-
nate. Consequently, the number of steps calculated for
pattern lengthn decreases with increased embedding dimen-
sion m.

The maximum number of stepsssm,nd can be numeri-
cally computed as follows. We start from a series generated
by a repetition of a sequence of lengthn. Additionally, we

TABLE I. Maximum number of stepsssm,nd as a function of
the embedding dimensionm and pattern sizen.

Pattern sizen Embedding dimensionm

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1

3 3 2 1 1 1 1 1

4 6 4 3 2 2 2 2

5 10 8 6 4 2 2 2

6 15 12 9 7 5 3 3

FIG. 2. Series composed of patterns(a) and series constructed
by a random selection of intervals(b), with identical ISI distribu-
tions (left). Steps[y-axis: logCs10dsed, thick line] only emerge in the
presence of patterns. Steps are reflected by peaks in the difference
quotient plot[y-axis: D logCs10dsed, thin line], respectively(m=10;
Euclidean norm; log; log2).

FIG. 3. (a) The number of steps decreases as the embedding dimension increases(m=1, . . . ,8; sequence length: 5; log; log2). At m
=1 there are ten steps, in agreement with Table I.(b)–(f): Behavior in the presence of additive noise(noise levels 8%, 32%, 128%, 512%,
and 1024%, see text). The number of steps form=1, . . . ,4 decreases for increased noise. The clearest step always emerges forn=5,
indicating a sequence of length 5.
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require that the elementshx1, . . . ,xnj yield distinct coordinate
differencesuxi −xju. After choosing an embedding dimension
m, n distinct embedded points are generated. On this set of
points, the maximum norm induces classes of equal inter-
point distances. The number of these classes equalsssm,nd.
The actual calculation ofssm,nd can be done using a com-
puter program(which, however, exhausts ordinary computer
capabilities very quickly), or by an unexpectedly involved
analytical calculation. The closed expression forssm,nd is
beyond the scope of this paper.

The lowest numbersssm,nd are given in Table I. They
clearly confirm the anticipated decrease of the number of
steps as a function ofm. For the series generated from the
sequence{5, 24, 37, 44, 59}, our correlation integral ap-
proach is able to reproduce the predicted decrease ofssn,md
[Fig. 3(a)]: In embedding dimensionm=1, all ten possible
nonzero differences are visible. Asm increases towards 5,

the number of steps decreases in accordance with Table I,
remaining constant form.5.

The behavior reported in Table I only holds if the series
are created by repeating a pattern based on distinct interco-
ordinate differences. In more general cases, the exact deter-
mination of the pattern length is hampered by a basic diffi-
culty: If one single step emerges, this can either be due to
one pattern consisting of two consecutive ISI’s, or two “pat-
terns” of one ISI each. A greater number of steps further
complicates this problem. As a consequence, Table I can only
serve as a rough guideline.

Fortunately, a helpful indicator for the pattern length ex-
ists. A pattern will emerge in the embedded ISI series in its
most genuine form(it is neither cut into pieces, nor spoilt by
foreign points), if the pattern length equals the chosen em-
bedding dimension(m=n). In Fig. 3(a), the most pronounced
steps appear atm=5, correctly indicating a pattern of length
n=5.

FIG. 4. Pattern-length indicatorm=n: Sequences of lengthn in a homogeneous Poisson background(embedding dimensionsm
=1, . . . ,8; log; log2). (a) n=4: most pronounced step atm=4; (b) n=6: most pronounced step atm=6. (c) Sequences ofn=3 andn8=4
included with different ratios(3:1 solid lines, 1:3 dashed lines): most pronounced step wherem equals the length of the dominating
sequence.

FIG. 5. Detection of sequences injected(with p=0,0.03,0.09,0.15) into random backgrounds based on the difference quotient:(a)
Homogeneous Poisson background,(b) inhomogeneous Poisson background,(c) “white noise” background. Already at a low injection
probability of p=0.03, a hump emerges(dashed boxes). At p=0.09, smaller peaks indicate the statistically significant accumulation of
pattern-induced distances(m=3; log; log2).
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FIG. 6. Cat V1 ISI-data, in milliseconds.(a) Neurons based on bimodal ISI distributions(left panels) display distinct firing classes: Class
I: noisy; class II: patterns in a random or incoherent background; class III: patterns(m=1, . . . ,8; log; log2). (b) Neuron of class II: The most
pronounced steps appear atm=2 andm=3, indicating patterns of length 2 and 3.(c) Optimal stimulation of a class III neuron leads to a
pattern sharpening effect.
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To investigate the reliability of the criterion in natural
settings, noise was added to the series generated from the
sequence{5, 24, 37, 44, 59}. For the following, we define
the noise strength as the ratio of the noise sampling interval
over shortest sequence interval. The results[Figs. 3(b)–3(f)]
demonstrate that the pattern length can be reliably estimated
up to a noise level of 512%[Fig. 3(e)], where the most
pronounced step still appears atm=5. The number of steps
for m,5 is affected by the noise: Form=1, for example,
nine steps are present at 8% noise[Fig. 3(b)], seven steps at
32% [Fig. 3(c)], and three steps at 128%[Fig. 3(d)]. The step
structure disappears if the noise level reaches the size of the
largest sequence element[Fig. 3(f)]. Thus the observation
that the most pronounced step appears atm=n, yields a valu-
able criterion for estimating the pattern length.

We found that this criterion also extends to less ideal set-
tings. To illustrate, we injected the sequencesh5,25,10,2j
and h5,25,10,2,17,33j, each with probabilityp=0.06, into
a noisy background generated by a homogeneous Poisson
process with refractory period. The Poisson distribution was
tuned to produce a mean identical with that of the patterns.
The clearest steps emerge at the embedding dimensions 4
and 6[Figs. 4(a) and 4(b)], showing that also in this case the
pattern length can be estimated. We refined our investigation
by varying the injection probabilities. Using the sequences
h4,17,12j and h5,25,10,2j, the first sequence was chosen
with p=0.12 and the second withp=0.04. We compared this
series with a series based on interchanged probabilities. The
outcome is that the clearest steps emerge form=n, where the
pattern with the higher probability dominates[Fig. 4(c)]. If
the two probabilities are similar, the estimation may be ham-
pered by effects of interference. A means of quantifying the
“clarity” of a step is to calculate the ratio between the slopes
of the flat and of the steep part of the steps. Consistently, the
embedding dimension for which the slope ratio reaches a
minimum coincides with the pattern length.

Currently, alternative models of noisy backgrounds exist
[4,22]. To show that our results hold regardless of which
model applies, we injected the sequenceh33,14,22j into
backgrounds generated by(i) a homogeneous Poisson pro-
cess with refractory period,(ii ) an inhomogeneous, sinusoi-
dally modulated Poisson process with refractory period, and
(iii ) a uniform random process on the intervals0,46g, using
injection probabilitiespP h0,0.03,0.09,0.15j. The results
show that the nature of the noisy background has a negligible
influence on the pattern detectability. Instead, the injection
probability is decisive(Fig. 5). Whereas two sharp peaks are
obtained forp=0.15 andp=0.09 (arrows), only one large
hump emerges forp=0.03. A single broad peak indicates a
reduced frequency of short intervals, which is the first indi-
cator of patterns at lowest injection probability. Two narrow

peaks indicate the pattern-generated statistically significant
accumulation of particular distances.

V. APPLICATION TO NEURONAL DATA

The method has been applied to extracellular field poten-
tial measurements of anesthetized cat neurons from striate
cortex(V1) and lateral geniculate nucleus(LGN) (for details
see Refs.[3] and[23]). Seventeen time series from four neu-
rons of V1 and 17 time series from six neurons of LGN were
analyzed.

Earlier investigations of V1 data[3,24] suggested the ex-
istence of three essentially stimulus-independent neuron
classes:(I) the class of randomly firing neurons,(II ) the class
of neurons where simple patterns are injected into a random
or incompatible background, and(III ) the class of neurons
that preferentially fire in patterns. In Fig. 6(a), the three
classes are illustrated by one V1 neuron each. Whereas bi-
modal ISI histograms emerge in all cases, the corresponding
log-log plots indicate clear differences in the associated fir-
ing behaviors.

Whereas neurons of class I show straight-line correlation
plots whose slope fails to saturate, neurons from class II
show a dependence of the slope-ratio on the embedding di-
mension (cf. Fig. 2). The detailed analysis of the second
neuron[see Fig. 6(b) and Table II] reveals ratio minima at
m=2 andm=3, indicating that patterns of length 2 and 3 are
present. The class III neuron’s behavior is compatible(cf.
Fig. 1) with the earlier finding[3] that members of this class
are generally associated with two(exceptionally: one) clearly
positive Lyapunov exponents, and with fractal dimensions
that saturate as a function of the embedding dimension.
These indicators hint at unstable periodic orbits generating
these responses, and imply that the data are essentially deter-
ministic in nature. Furthermore, representatives of class III
have been found, where the optimal stimulus displayed
pattern-sharpening effects[Fig. 6(c)].

The results obtained for the LGN data are compatible
with the above classification, but the class properties are less
well exhibited. An overview on the classification of investi-
gated neuronal LGN and V1 data is shown in Fig. 7.

TABLE II. Ratio of the flat slopesfmd over the steep slopessmd
of a step, as a function of the embedding dimensionm, of the data
shown in Fig. 6(b).

m 1 2 3 4

fm/ sm 0.27 0.19 0.20 0.30

FIG. 7. Histogram of LGN and V1 data based on classes
I–III.
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VI. DISCUSSION

Our method provides an unbiased test for pattern occur-
rence, even in noisy environments. It is simple to implement,
and use. Although the method does not directly deliver the
patterns, robust indicators for their lengths are provided. To-
gether with the locations of the steps, this can be used to
substantially minimize the set of templates to be tested. As
multitrain patterns often imply single-train patterns, our find-
ings are also of interest for analysis of the former.

Our experimental results show the abundance of patterns
in neural spike trains, corroborating earlier reports
[3,9,25–28]. Although this does not directly prove a func-
tional role, spike patterns could serve as code words in neu-
ral information transfer[29]. In particular the deterministic
nature of class III neuron responses(and to a lesser extent,
that of class II) implies that patterns could be used as an
efficient means of information transmission. The context of
noise-driven computation by locking[30,31] provides a the-

oretical framework wherein both extreme classes I and III
gain a straightforward functional justification. When LGN is
compared to V1, an increased level of noise appears to be
present. This property could indicate a simpler type of com-
putation formed in the LGN. Correlation integral-based pat-
tern detection provides an appropriate tool to further address
this, and related, questions.
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