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ABSTRACT

Methods for detecting patterns in noisy signals are often
template based. As a consequence, a priori selections of
potential pattern structures have to be made. To avoid this
shortcoming, we propose a novel statistical approach based
on the correlation integral. The method significantly re-
duces the set of appropriate templates, and also works under
noisy conditions.

1. INTRODUCTION

Biological neural systems can be viewed as an alternative
information processing paradigm, that often proves far more
efficient than conventional approaches. Although the under-
lying structures (neurons and their connectivity) can be ac-
curately modelled by electronic circuits [1], the principles
according to which they process information are not well
understood. However, growing evidence suggests that neu-
ronal circuits work according to distributed parallel process-
ing principles, and that information encoding differs from
than of traditional signal processing [2].

In neural information processing systems, activity is ma-
nifested as spikes. Temporal recordings of firing events pro-
vide interspike interval (ISI) series as the empirical material
to work with. It is expected that the information processed
in the network is encoded as some structure in the ISI se-
ries. This implies that pattern detection should constitute
the first step in the investigation of neural information pro-
cessing. The simplest starting point are single ISI series.
Patterns can be defined as parts of the series that repeat sig-
nificantly more often than they would in random distribu-
tions [3]. For the identification of patterns, pattern templates
are usually predefined and their frequency of occurrence is
counted (template-based methods [4]).

Template-based methods suffer from two fundamental
problems. First, the detection relies on the set of pre-chosen
templates. As the patterns are a priori unknown, the inclu-
sion of appropriate templates could be considered a matter
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of luck. Unbiased guessing will, therefore, require exceed-
ingly large template sets. The second problem is the om-
nipresence of noise, implying that patterns cannot be ex-
pected to repeat perfectly. As a consequence, the question
arises of how to choose the accuracy required for template
matching. To avoid these problems, we propose an unbi-
ased, purely statistical approach to pattern detection.

2. CORRELATION INTEGRAL METHOD

The correlation integral was originally designed for the de-
termination of the correlation dimension [5]. The purpose
of this paper is to explore its potential for the detection of
patterns in ISI-series. First, we briefly introduce the corre-
lation integral, and its ability to detect point clusters in the
embedding space. Second, we discuss the utilizability of the
method for ISI patterns. Third, we evaluate, to what extent
the method is able to detect the length of ISI patterns.

Consider an arbitrary scalar time series of measurements
{xi}, i = 1, . . . , L, where L denotes the length of the time
series. From these data, embedded points ξ

(m)
k are con-

structed: ξ
(m)
k = {xk, xk+1, . . . , xk+(m−1)}, where m is

called the embedding dimension. This coordinate-delay con-
struction is standard in nonlinear dynamics. Its purpose is to
reconstruct the complete underlying dynamics from partial,
mostly scalar, measurements [6, 7]. From the embedded
data, the correlation integral is calculated as

C
(m)
N (ε) =

1
N(N − 1)

∑

i�=j

θ(ε − ‖ξ(m)
i − ξ

(m)
j ‖),

where θ(x) is the Heavyside function (θ(x) = 0 for x ≤ 0
and θ(x) = 1 for x > 0) and N is the number of embedded
points (N ≤ L − m + 1). For the actual computation of
C

(m)
N (ε), different norms can be used. In most cases, the

maximum norm is of advantage, as this choice speeds up
the computation, and allows an easy comparison of results
obtained for different embedding dimensions. Degeneracies
introduced by this choice are removed by adding a small
amount of noise (in general uniformly distributed within 1%
of the interspike intervals).
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The correlation integral C
(m)
N (ε) allows the detection of

clusters, which are formed by the embedded points: For
the calculation of C

(m)
N (ε), an embedded point ξ

(m)
0 is ran-

domly chosen. Then, the number of points in its ε-neighbor-
hood is evaluated, as ε is enlarged. If the point belongs to
a cluster, many points will join the ε-neighborhood. Once
the cluster size is reached, less points are recruited, leading
to a slower increase of C

(m)
N (ε). When an average over dif-

ferent points of the cluster is performed, as required by the
correlation integral, pieces of fast increase of C

(m)
N (ε) inter-

change with pieces of slow increase. The denser the clus-
tered region, the more prominent this step-wise structure.
When C

(m)
N (ε) is displayed in a log-log plot (log C

(m)
N (ε)

vs. log ε), the step-like structures are preserved and extends
over a larger region, as compared to C

(m)
N (ε) vs. ε. To

demonstrate our predictions, we constructed a series as a
repetition of the sequence {1,2,4}, where the sequence num-
bers can be interpreted as ISI durations. The embedding of
this series for m = 2 leads to three clusters, represented
by the points P1 = {1, 2}, P2 = {2, 4} and P3 = {4, 1}.
Calculating the correlation integral and plotting log C

(m)
N (ε)

against log ε leads to a clean-cut staircase structure in the
log-log plot (Fig. 1a).
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Fig. 1. Log-log steps for different classes of data (m = 2).
a) Virtually noise free (noise ±1%, solid line in all four
plots), b) noisy (noise ±10%, dashed line), c) unstable pe-
riodic (dashed line), d) random background (dashed line).

In practical applications of the method, the log-log steps
generally become less salient due to influences that will
be discussed below. In this case, the difference quotient
∆log C

(m)
N (εi) := log C

(m)
N (εi+1) − log C

(m)
N (εi), which

approximates the derivative of the correlation integral, may
provide an improved indication for the occurrence of clus-
ters. For small ε-neighborhoods, the log-log plot is affected
by strong statistical fluctuations. These regions, however,
are easily identified and excluded from the analysis.

3. BLURRED LOG-LOG STEPS

The ISI series used for Fig. 1a is the simplest and most ideal
case of a ISI pattern – the repetition of a single sequence.
However, in natural systems, three influences contribute to-
wards a blurring of the steps, if only one pattern is present.

First, the ISI series could be affected by noise. This
can be modelled by adding uniform noise to our ISI series
{1,2,4,1,2,4,. . .}. As the point clusters are less dense in the
embedding space, we expect noise to first affect the bound-
aries of the log-log steps, and then penetrate towards the
centers, as the amount of the noise increases. When noise
is added to our ISI series, the obtained results in the log-log
plot (dashed line) clearly corroborate our predictions: the
horizontal parts of the steps are less broad, and the vertical
parts are less steep (Fig. 1b).

Second, the system that generates the ISI series could
be chaotic in nature. In this case, a distance from a given
unstable periodic orbit is expected to grow as etλ, where t
denotes the time and λ is the (positive) Lyapunov exponent
of the orbit. This implies that a continued perfect repeti-
tion of a sequence is unlikely. Moreover, because the decay
from the unstable orbit occurs in a deterministic manner,
additional (pseudo-) orbits will emerge and lead to an in-
creased number of steps. We illustrate this with a simplified
model: With probability p1 = 0.5 we take the whole se-
quence {1,2,4}, with probability p2 = 0.31 we select the
subsequence {1,2}, and with probability p3 = 0.19 the sub-
sequence {1} (this choice leads to p1

p2
� p2

p3
). The obtained

results in the log-log plot (dashed line) corroborate our as-
sertions: instead of three steps, five steps appear (Fig. 1c).

Third, patterns could occur within a noisy background.
In this case, the characteristic sequence of ISIs is only pro-
duced occasionally, otherwise, the length of the ISIs are ran-
dom. Therefore, the fraction of points belonging to clusters
in the embedding space will be diminished, which leads
us to expect that the steps in the log-log plot become less
prominent. To simulate this situation, we took with prob-
ability p = 0.5 the sequence {1,2,4}, otherwise three in-
terspike intervals were randomly drawn from the interval
(0, 4]. The obtained results in the log-log plot (dashed line)
corroborate our assertions: the number of steps is unaf-
fected, but the steps themselves are much less pronounced
(Fig. 1d).

ISI data of natural systems can also be expected to con-
tain more than one pattern. To analyze this situation, we ex-
tended our investigations to data composed of 3 sequences
({2,6,10}, {8,2,1}, {2,7,5}). To contrast multiple patterns
against random firing, two series were constructed: the first
by randomly selecting among the three sequences, the sec-
ond by randomly selecting intervals from the concatenated
set {2,6,10,8,2,1,2,7,5}. Thus the first series was composed
of patterns, whereas the second series was purely random.
Both series, however, were based on identical probability
distributions (Fig. 2a,b, respectively). Our analysis shows
that steps (peaks for the difference quotient plot) emerge
only if patterns are present. Thus our method is able to dis-
tinguish series with patterns from series without.

IV - 670

➡ ➡



0

-15
-3.2

0

lo
g 

C
   

 (
ε)

(1
0
)

∆ 
lo

g 
C

   
 (

ε)
(1

0
)

log ε

b)

NN

-3

lo
g 

C
   

 (
ε)

(1
0
)

N

0

-15

-3.2

0

∆ 
lo

g 
C

   
 (

ε)
(1

0
)

N

5 10

0.1

0.2

0.3

0.1

0.2

0.3

5 10

a)

0

0
0

Fig. 2. Comparison between a series composed of patterns
(a) and a series composed from random selection of inter-
vals (b), based on identical ISI distributions. The compari-
son shows that log-log plot steps (y-axis: log C(10)(ε), thick
line) emerge only in the presence of patterns. A more sen-
sitive indicator are the peaks of the difference quotient plot
(y-axis: ∆log C(10)(ε), thin line), respectively (m = 10,
Euclidean norm).

4. PATTERN LENGTH ESTIMATION

Once the presence of patterns is established, an estimate of
the pattern length, defined as the number of ISIs involved, is
desirable. That this is achievable is motivated by the follow-
ing argument. For the calculation of the distance between
two points, the differences between corresponding coordi-
nates need to be calculated. Using the maximum norm, the
distance between the points is defined as the largest differ-
ence between corresponding coordinates. As an increase of
the embedding dimension yields ever more pairs of coordi-
nates, the presence of a particularly large difference (which
has an increased probability for being present in higher di-
mensions) will dominate. As a consequence, the number of
steps calculated for data with pattern length n will decrease
with increased embedding dimension m.

For ideal toy systems, the maximal number of occurring
steps s(m,n) can be computed numerically: We start from
a series generated by a repetition of a sequence of length
n. Additionally, we require that the elements {x1, . . . , xn}
yield distinct coordinate differences |xi − xj |. After choos-
ing an embedding dimension m, n distinct embedded points
are generated. On this set of points, the maximum norm
induces classes of equal point-point distances. The num-
ber of these classes equals s(m,n). The actual calculation
of s(n,m) proceeds via a computer program (that exhausts
the capabilities of an ordinary computer very quickly) or an
analytical calculation, which however is unexpectedly in-
volved. The obtained closed expression for s(m,n) is be-

yond the scope of this paper, even in the simple case con-
sidered [8].

For the series generated from the sequence {5, 24, 37,
44, 59}, our correlation integral approach was able to re-
produce the predicted decrease of s(n,m) (Fig. 3a): In em-
bedding dimension m = 1, all ten possible nonzero differ-
ences are reflected. As m increases towards 5, the number
of steps decreases in accordance with the analytical result
[8], remaining constant for m > 5.
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Fig. 3. a): Decrease of the number of steps as a function of
the embedding dimension (m = 1, . . . , 8, sequence length:
5). b-f): Influence of additive noise to the data (noise level:
8%, 32%, 128%, 512% and 1024% of the smallest interval
of the sequence, uniform distributed). The number of steps
for m = 1, . . . , 4 decreases for increased noise, whereas
the clearest step always emerges for n = 5, even for a noise
level of 512%, indicating a sequence of length 5.

This behavior, however, only holds if the series are cre-
ated by repeating a single sequence with distinct inter-coor-
dinate differences. The exact determination of the pattern
length in the more general cases is hampered by an obvi-
ous basic difficulty: If, for the simplest example, one step
emerges in the log-log plot, this can either be the conse-
quence of one pattern consisting of two consecutive ISIs, or
two “patterns” of one ISI each. A greater number of steps,
as is obtained in the presence of a multitude of patterns, fur-
ther complicates this problem. Moreover, in the presence of
noise, the identification of steps becomes less reliable.

Fortunately, a helpful indicator for the pattern length can
be obtained from the following reasoning. A pattern will
emerge in the embedded ISI series in its most genuine form
(neither cut into pieces, nor spoilt by points that do not be-
long to the pattern), if the pattern length equals the chosen
embedding dimension (m = n). In fact, in Fig. 3a, the most
pronounced step appears at m = 5, correctly indicating a
pattern length of n = 5.

To investigate the influence of noise, we applied addi-
tive noise of increased magnitude (Fig. 3b-f) to the series
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generated from the sequence {5, 24, 37, 44, 59} (the mag-
nitude of noise is measured as a percentage of the smallest
interval). The results demonstrate that the estimation of the
pattern length is possible for a noise level of 512% (Fig. 3e),
where the most pronounced step still appears at m = 5. The
number of steps for m < 5, however, is much more sensi-
tive to noise: For m = 1, for example, 9 steps are present
for 8% noise (Fig. 3b), 7 steps for 32% noise (Fig. 3c) and
3 steps for 128% noise (Fig. 3d). As expected, the step-
structure disappears, when the noise level reaches the same
magnitude as the longest ISI of the sequence (Fig. 3f). Con-
sequently, the observation that a pattern emerges in the em-
bedded ISI series in its most genuine form for m = n, pro-
vides a criterion for estimating the pattern length.

To investigate its potential in less idealistic settings, we
performed a number of experiments. First, we include the
sequences {5, 25, 10, 2} and {5, 25, 10, 2, 17, 33}, respec-
tively, with probability p = 0.06 into a noisy background.
The background was provided by a homogenous Poisson
spike generator with refractory period. Additionally, the
Poisson distribution is chosen so as to produce a mean in-
terspike interval identical with the one generated by the pat-
terns alone. Consistent with our expectations, the clearest
steps emerge at the embedding dimensions 4 and 6 (Fig. 4a,b),
which implies that the pattern length can be estimated even
in this case.

We refined this investigation by varying the individual
pattern inclusion probabilities (using the sequences {4, 17,
12} and {5, 25, 10, 2}). For the generation of the first series,
the first pattern was chosen with p = 0.12 and the second
with p = 0.04. For the generation of the second series,
the probabilities were exchanged. The obtained results im-
ply that even in this setting, the clearest steps emerge for
m being equal to the pattern length n, but the influence of
a particular pattern is weighted by its probability of occur-
rence (Fig. 4c). If the two probabilities are close, the ex-
traction of the pattern lengths is still possible, but may be
hampered by effects of interference among the patterns. A
possible means of quantifying the “degree of clearness” of a
step is by calculating the ratio between the slopes of the flat
and of the steep part of the steps in each embedding dimen-
sion. The embedding dimension for which this ratio reaches
a minimum indicates the pattern length.

5. DISCUSSION

As shown, our method allows unbiased testing for pattern
occurrence. Furthermore, the presence of patterns can be
detected against a random environment. Although the method
does not deliver the patterns themselves, robust indicators
for the lengths of patterns are provided. As soon as the
existence of patterns is established, pattern size estimation
combined with the locations of the steps can be used to sub-
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Fig. 4. Log-log plots for varying embedding dimensions
(m = 1, . . . , 8) indicate the pattern size. a) Sequence of
length 4 immersed in a homogenous Poisson spike train:
Most pronounced step for m = 4. b) Sequence of length 6:
Most pronounced step for m = 6. c) Sequences of length
3 and 4 immersed at different ratios (solid line: ratio 3:1,
dashed line: ratio 1:3): Most pronounced step is where m
equals the length of the dominating sequence.

stantially minimize the set of possible trial templates when
working with template-based methods. This pattern detec-
tion method gains importance in robotics and signal pro-
cessing, where biological signals are taken as basis for re-
verse engineering approaches.
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