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Abstract—Phase and frequency locking are generic
phenomena among coupled limit cycles. As yet, it has
been shown that simple models of the neurons (such as the
Hodgkin-Huxley and Morris-Lecar) are on limit-cycle so-
lutions. The same holds for in vitro pyramidal neurons, if
they are driven by constant currents. It is, however, un-
known whether this also holds for detailed neuronal com-
partment models. In this contribution we show computa-
tionally that locking holds and is measurable in these mod-
els as well, and can persist even under substantial changes
of the driving. Thus, locking among neurons could pro-
vide a mechanism for cortical information processing, in
the frequency as well as in the temporal coding paradigm.

1. Introduction: Detailed vs. generic neuron models

Both experiments and theoretical studies have shown the
need to adopt a multi-level approach to understanding the
brain, as molecular and genetic events can affect the entire
central nervous system, and vice versa. At one extreme,
there are the biophysical models of single neurons. These
generally are based on one single concept, from which ac-
curate neuron models can be constructed: Compartments,
i.e., small cylindrical segments of the neuron, are mod-
eled with their own complement of ion channels, com-
putationally represented by an electrical circuit that takes
into account membrane resistance, capacitance, and ionic
conductances [1]. Within each compartment, ion currents
are typically described as variable conductances in series
with the ionic reversal potential. In the extended Hodgkin—
Huxley formulation, Ca?*-dependent voltage-gated chan-
nels generally require multiple state variables as well as Ca-
concentration information. From the compartments, indi-
vidual neurons can be constructed, and assembled towards
full neural networks by means of synaptic conductive inter-
connections. On this level, synaptic currents are generally
modelled as simple alpha-function responses to an action
potential.

However: How much biological detail is needed for such
a modeling? It is an open question as to whether a detailed
numerical model can be more informative than a simpli-
fied analytical description of a cell. Neuronal geometry is a
crucial determinant both of electrical properties and of neu-
ronal connectivity. Every neuronal type has certain charac-
teristic branching patterns, which are nevertheless unique
from one cell to another. How does one represent the di-
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versity of a subclass of neurons, while retaining the distin-
guishing features of this subclass?

To some extent, global information appears to provide
a solution to this problem. But, how does one decide on
the connectivity models on this level ? Here, the plethora
of answers is even larger. The generation of semi-global
rhythms [2], e.g., could be one motivation for connectivity
models, but there are certainly much more. This all indi-
cates that analytical models might be very useful, if they are
able to reflect "all” basic properties of the neuron. In this
contribution, we shall focus on this issue in detail, by show-
ing that detailed neuronal models — simulated by means of
the NEURON environment [3] — are able to reflect the basic
properties of limit cycles, which are phase and frequency
locking.

2. Neuronal synchronization

In 1657, Christiaan Huygens [4] revolutionized the mea-
surement of time by creating the first working pendulum
clock. In early 1665, he discovered “.. an odd kind of sym-
pathy perceived by him in these watches [two pendulum
clocks] suspended by the side of each other.” The pendu-
lum clocks swung with exactly the same frequency and 180
degrees out of phase; when the pendulums were disturbed,
the antiphase state was restored within a half-hour and per-
sisted indefinitely. Huygens deduced that the crucial in-
teraction for this effect came from “imperceptible move-
ments” of the common frame supporting the two clocks.
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Figure 1: Huygens’ clocks, jointly suspended from a com-
mon construction.



These observations are part of a set of properties that are
generic for any (weakly) coupled limit-cycle systems: 1)
Phase and frequency locking instead of exact temporal syn-
chronization, 2) Farey-tree ordering of winding numbers,
3) devil’s staircase structure of locked intervals [5]. These
properties distinguish synchronization among limit cycles
from synchronization among chaotic systems. In the latter
case, the nonlinearity is usually maximally chosen, which
implies chaotic individual systems. This then leads to the
concept of a synchronization hyperplane for the symmet-
ric solution, which is, upon the increase of the coupling,
usually lost by means of a blow-out bifurcation [6]. In
the coupling of the limit cycles, the systems that synchro-
nize are generally not identical; when combined, this gives
rise to higher-dimensional periodic solutions rather than to
symmetric chaotic solutions. Here, an infinity of states of
synchronization is due to the frequencies of the limit cy-
cles, and not so much to the nonlinearity. The nonlinearity
resides in the coupling, and can be chosen arbitrarily small.

Figure 2: Uni-directionally connected neurons.

The question of whether neurons can be intrinsically
(i.e., in itself) chaotic at all or not, has not been fully an-
swered so far. Selverstone et al. [8] have found that so-
matogastric ganglion cells can behave chaotically. How-
ever, the questions of how realistic their experimental situ-
ation is and how significant these neurons are for cognition,
are difficult to assess. We have shown that connected neu-
rons in slice, when driven by constant though differing cur-
rents, engage in locking. For inhibitory pair-coupling, this
response can become chaotic. This, however, only hap-
pens at very high interaction strengths on a small, though
nonzero, part of the parameter set [7]. For this system, we
have identified the Arnold tongues along which these lock-
ings emerge (see Fig. 3, 4). This, on one hand, justifies
the analytical modeling of pyramidal neurons by means of
limit cycles, on the other hand it also yields insight into
the way these neurons encode and process arriving infor-
mation. One can, however, argue that during the slicing
process, the neuronal processes and structures are so much
affected that this experiment no longer mirrors the realis-
tic biological behavior, and that the quasistatic conditions
used in these experiments do not have relevance in terms
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of the conditions of ever-varying currents in the (in vivo)
brain. In this sense, neuronal locking could be an artifact
of the preparation.

Figure 3: Arnold tongues from uni-directionally excita-
torily connected pyramidal neurons (from in vitro experi-
ments). The coupling constant K is in (macrobiologically)
rescaled units.

Figure 4: Typical phase-locking response for a sweep
across the tongues, from the middle to right of Fig. 3,
showing differing periodicities encoded (in vitro experi-
ments). Depending on the velocity of the sweep, finer or
just the basic periodicities are reported.

In fact, we have measured neuronal in vivo responses
that were chaotic (of the sample, ~ 1/3 was low-
dimensional chaotic; ~ 1/3 was high-dimensional with no
real scaling properties, and ~ 1/3 showed random spik-
ing behavior many of them with long-tail distributions [2]).
In our interpretation, however, this is a network-induced
effect, either established by a chaotic modulation of the
network input (combined with the networks’s own abil-
ity to generate this effect), or by appropriate local inter-
actions (leading to ”noisy” neurons). The whole of this
situation justifies the investigation of locking by means of
detailed neuron simulations, to identify typical situations
where synchronization of limit cycles holds, and where it
fails.



3. Methodsand materials: Detailed neuron models

The extent to which neurons synchronize is enhanced by
uni-directional coupling, which is most often the case in
biology. This will be the paradigm we use, see Fig. 2.
Our detailed models of the neurons are based on a geomet-
ric structure comprising more than 100 compartments (see
Mainen et al. [9]). However, also less detailed models were
tested, yielding results that were quite close to the ones re-
ported here. Detailed neurons were connected via one ex-
ponential synapse of the type provided by NEURON, based
upon the relationship

i) =9(v-9), M

where g(t) = we¥T embodies the dependence on the
synaptic weight wand the decay time constant 7, and v—eis
the excess of the presynaptic-synaptic membrane potential
over the reversal potential.

4, Results

In the following, we show the effects of the coupling to
the firing frequency and to the firing phase. In the first ob-
servational approach, the coupling changes the dependence
of the firing frequency on the driving input from a slightly
nonlinear one into a devil’s staircase.
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Figure 5: In this numerical experiment with two cou-

pled detailed neurons, I; was held fixed, whereas I, €
[0.06,0.46] increased in steps of 0.02. Top: Autonomous,
non-locked case (K 0). Bottom: Nonzero coupling
(K = 0.007) leads to frequency locking, indicated by the
devil’s staircase frequency dependence.

If the firing frequency is plotted as a function of the driv-
ing currents Iy, I, locking is reflected in contour lines that
are deflected into the horizontal and the vertical directions.
On each strip, we have a fixed periodicity, see Fig. 6.
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Figure 6: Contour plot of the firing frequency, using vari-
able neuronal inputs I, I2, with fixed coupling strength
K = 0.007. The figure clearly shows locking in the form
of multiple rescaled Arnold stripes. The main periodici-
ties 1,2,3 are indicated. Horizontal lines: the first neuron is
locked to the second, vertical lines: the second is locked to
the first.

By properly zooming into the first tongue of Fig. 6, we
recover a part of the structure from Fig. 2, indicating that
frequency and phase locking emerge together (Fig. 7).
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Figure 7: Frequency locking, first Arnold tongue set alone.
The similarity with Fig. 3 (phase picture) is apparent.

By choosing the inputs from a 1;/I,-combination from
one of the frequency-locking tongues of Fig. 6, we can di-
rectly verify that frequency locking emerges together with
phase-locking. In Fig. 8 we show the phases for the firing



on two of the most basic tongues. However, also higher
stable periodicities can be similarly found, with ease.
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Figure 8: Top: locked phase of period 2, bottom: locked

phase of period 3.

These tongues of fixed periodicity are rather stable, with
respect to the phase representation. In Fig. 9 we quickly
sweep along the tongues (at fixed ratio I, /1,) without losing
the periodicity.

I2

Figure 9: Locking persists upon quickly sweeping along
the period-2 Arnold tongue, from low to large inputs.
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5. Discussion and conclusions

Fregency and phase locking naturally emerge for de-
tailed neuron models, if the neurons are driven by — vari-
able or constant — currents and connected by stronger (but
still weak, in the mathematical sense) synaptic coupling. In
comparison to the corresponding slice experiments, the sta-
bilization appears to be delayed (as it is in the mathematical
simulations using the phase-response curve). We therefore
conclude that a mechanism is built into the biology that
leads to a faster stabilization. This mechanism, obviously,
is not yet captured in the detailed modelling approach.

The outcome of the experiments indicates that locking
could provide a valuable means for information coding, in
the frequency as well as in the temporal coding sense. The
question of whether the brain uses a frequency or a tempo-
ral code has been discussed fiercely, but is still not resolved.
Our work shows that locking provides a mechanism that is
working in both paradigms. The only necessary condition
for locking to take place is a sufficient discrepancy between
the modulations of the driving and the neuron’s intrinsic fir-
ing frequency, and a separation between weak and strong
synapses, where many of the weak ones drive the neurons,
whereas the strong ones — or a few of them — provide the
locking. As a mechanism for the latter, synaptic plasticity
emerges naturally.
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