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Abstract—In biological neural networks, the noise
component often is of the same order as the signal strength.
This, and the (as yet unexplained) computational efficacy of
biological systems, is of particular interest for technical ex-
ploitation, since miniaturization drives hardware chips nat-
urally towards these conditions. We discuss a framework
in which noise and precision are complementarily used to
encode information. Our approach is based on weakly cou-
pled neurodynamical limit-cycle solutions, which are in-
vestigated under natural conditions of transient temporal
behavior. We have developed tools to show that locking is
preserved under a large variety of such conditions, although
in these cases the locked states are difficult to assess. We
find that the range of conditions under which coding by
locking is operational, is large enough for a realization in
nature, hinting at a large potential also in technical applica-
tions. The described coding mechanism may be fundamen-
tal for achieving the highly efficient computations observed
in biological systems.

1. On neuronal limit-cycle firing

Driving of neurons by means of constant currents leads
to oscillatory behavior. However, different mechanisms
may be behind this phenomenon, which leads to differing
stability properties of the oscillations. This is of paramount
interest in the context of neuronal firing, as they largely de-
termine the responses to perturbations arriving at the neu-
ron in the form of spikes. The most common type of neu-
ronal oscillatory behavior is generated from a limit-cycle
solution. Limit cycles are of interest because of their rela-
tion to noise. Noise is an ubiquitous phenomenon in bio-
logical neural networks. For a limit-cycle solution, a par-
ticular stability property must be satisfied. Whereas n − 1
stability exponents must be contracting, the largest one is
of marginal type, pointing into the direction of the flow.
Limit cycles are a typical nonlinear phenomenon. Whereas
for linear systems, the behavior is determined by the vicin-
ity of the origin, limit cycles are spatially extended regions
of stable behavior, with the origin being unstable. In di-
mension one or two, flow limit cycles are forbidden by the
so-called Bendixon-Poincaré theorem [1].

How does limit-cycle firing of neurons emerge from sub-
threshold behavior? As the simplest alternative, neurons

a)

b)

Figure 1: Scheme of the birth of limit cycles in 2-d, a) by
a Hopf bifurcation, b) by a saddle-node bifurcation. Null-
clines (dx/dt = 0, dy/dt = 0) are drawn. Open circles:
unstable, filled circles: stable fixed points.

may undergo a Hopf bifurcation, which naturally leads to
limit cycles. This is what happens for a Hodgkin-Huxley
(H.-H.) [2] neuron. In this case, the oscillation starts at a
nonzero onset frequencyΩ (called hard onset, class II oscil-
lations [3-4]). The intrinsic example for this phenomenon
is the differential equation [5] ż = (µ+iωch)z−|z|2z, z(t) ∈
C, where ωch is the natural frequency of the oscillation and
µ ∈ R denotes the bifurcation parameter. In the presence of
a forcing, an additional term Feiωt appears on the rhs. The
above equation is the generic system displaying a Hopf bi-
furcation: For µ < 0, the solution z(t) = 0 is a stable fixed
point, whereas for µ > 0, the fixed-point solution becomes
unstable and a stable limit cycle of the form z(t) =

√
µeiωcht

appears. However, in most observed neuronal firing, firing
starts at arbitrarily low frequency (soft onset, class I oscil-
lations [3-4]), which implies that the oscillation is likely to
be generated by a saddle-node bifurcation, an alternative
mechanism generally leading to limit cycles.

2. Experimental proof of the limit-cycle property of
pyramidal neurons

As the exact equations of biological neurons are un-
known, any information reducing this lack of knowledge is
highly welcome. Of particular interest is whether the firing
is actually based on a limit-cycle solution, or whether this is
not the case. In the following, we will provide evidence on
different levels that biological neurons are indeed on limit-
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cycle solutions, if the driving is not too wild so as to impose
its own nature. As we are unaware of the existence of an
explicit proof for the limit-cycle property of cortical neu-
rons, we provide it here for pyramidal neurons [6]. This
proof is by the experimental evidence that coupled biolog-
ical neurons lock along Arnold tongues [7], a phenomenon
unique to limit-cycle solutions. To this end, regular pulses
were put on the axon of a neuron that was connected to a
target pyramidal neuron. The latter was also driven by a
current at, however, differing frequency. When sweeping
over the product space of the frequencies, we observed the
typical locking along Arnold tongues, see Fig. 2 [7]. The
figure was obtained from experimental pulse experiments
with pyramidal neurons from the rat somatosensory cortex.
From these, a prototypical phase-response map was derived
and used for the generation of the Arnold tongues. When
the experimental neurons were swept across the tongues,
they reliably fired according to the theoretical predictions,
see Fig. 3. This proves that the pyramidal neurons are on
limit-cycle solutions indeed.
The above insight into the nature of cortical neuronal fir-

ing is nontrivial, because a neuron, when on a limit-cycle
solution, ideally combines noise and precise timing, in the
following sense. The noise can be thought of as the driving
source for the neuron, if it follows a central limit theorem
(CLT) behavior closely enough. Superimposed on noise,
the neuron emits and receives precisely timed firing events.
Provided that one agrees that precise timing has a mean-
ing for the cortex, the exact relationship between the spikes
emitted can be understood as a coding scheme. Informa-
tion can always be understood as a departure from back-
ground behavior, in a statistically significant way. This is
achieved in the locking paradigm by setting off precise tim-
ing against noisy driving. For an illustration, assume for
the moment temporally piecewise constant currents. By
means of a second neuron (locked to the first), driven by
an alternative current strength, the analogue information is
converted into an essentially digital one, namely the peri-
odicity of its firing:

Coding : currents {I1, I2} → periodicity p2.

In this way, the amount of a current driving a neuron is
coded with reference to the current driving the target neu-
ron. As the outcome, the encoded information is of analog
and the coded information of digital type. Although there
is an infinity of periodic solutions in the Arnold tongues,
the velocity of the sweep limits the detected periodicities
to the most fundamental ones. Note that also the firing fre-
quency follows this scheme. Being mostly thought of ana-
logue quality when seen as the input, it becomes a digital
one, when seen as the output. In fact, the effective emer-
gent firing rate is organized along a devil’s staircase. The
generated coarse graining is destroyed when many neurons
from different areas impinge on one single neuron. Their
input then generally approximates well an analogue driving
current, as we will discuss in the next section.
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Figure 2: Arnold tongues of locked behavior (above: exci-
tatory, below: inhibitory, one-sided interaction), as a func-
tion of the quotient Ω between the two intrinsic firing fre-
quencies, and the strength of the coupling (i.e., the synapse)
K. The numbers indicate the order of the generated period-
icities, letter s the direction of the sweep of Fig. 3.

3. Supporting physiological evidence

The more separated the analog aspect is from the digi-
tal one, the better the composed scheme works. Locking
among biological neurons thus requires a degree of sepa-
rateness between CLT-like noisy drivings, and strongly co-
ordinated pulses among the locked neurons. Is such a situ-
ation likely to occur, taking into account the physiological
facts? It has recently been observed that when a neuron
is stimulated according to some regular pattern (as would
emerge yet from very weakly locked neurons), this may
trigger LTP and STP mechanisms, which may facilitate the
synapses’ efficacy by a factor of 1.5 [8-9]. I.e., locking is
a self-enhancing process, up to the extent allowed by this
factor. In the Arnold picture, this effect can be associated
with an increase of K by an identical factor. Yet another
observation in the field of physiology comes at the aid of
the proposed mechanism. In hippocampus, two clearly dis-
tinguishable classes of synapses emerge, that differ in their
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release probability by a factor of about 6, which also should
transfer into similar classes of efficacy. The percentage of
efficient synapses is relatively small (∼ 15 vs. 85%), which
seems compatible with the situation we envisage. If we
have about 100 active synapses of small efficacy from esti-
mated 50 − 100 neurons needed for the firing of the target
neuron, already one strong synapse (or a small number of
temporally synchronized strong synapses) could indeed be
sufficient for leading to the above outlined situation.

4. Properties of Arnold coding

As has been worked out earlier, the Arnold coding
scheme has optimality properties that are reminiscent of the
Huffman code. The largest coding area correspond to the
simplest code of a period 1, the second largest to period 2,
and so on. This not only applies to the coding area, but also
to temporal aspects: When sweeping over the tongues (i.e.,
when the relationship between the two neurons changes),
the code is self-refining in the following sense. With a fast
sweep, only the lowest periodicities are probed (see Fig.
3). An increase of the firing rate, with a fixed velocity of
the sweep, then is tantamount to a decrease of the effective
velocity of the sweep, which now allows witnessing also of
very high periodicities, that before were missed.
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Figure 3: Sweep over inhibitory tongues with a biologi-
cal neuron, across the cut s in Fig. 2. The phases φ in-
deed show repeated periodicities 2,3,4,5, as predicted by
the Arnold tongue paradigm.

5. Limit-cycle and coding stability under modulated
driving

These attractive features suggest that Arnold coding
could play a prominent role for the efficiency of cortical
information processing. Moreover, the above sweeping ex-
periments suggest that the Arnold coding scheme is suf-
ficiently robust to also be effective in the context of non-
quasistatic situations. To investigate this important aspect
in more detail, we performed numerical experiments. In a
first set of experiments, we simulated H.-H. neurons that
were reciprocally excitatory/inhibitory coupled via α-type
synapses. For the neuron indexed by 1, this modifies the
normally constant driving current to

I1(t1)(1 − sp(sp2 − t1)), (1)

where sp(t) = gp · te−t/0.5 + 2, gp = 0.5, and sp2 is the
time when neuron 2 emitted the last spike. For the first
experiment, we chose constant currents I1(t) = 15.2, I2(t) =
45.5855 and observed, as can be expected from the Arnold
tongue structure, periodicity 2. In order for locking to be
a valuable coding scheme, we have to verify that the limit
cycle is sufficiently stable with respect to varying driving
currents, which is the situation encountered in nature. To
this end, we drive the previously constant currents Ii(t), i =
1, 2, by a function d(t) common to both, which leads to the
currents Ĩi(t) := d(t)Ii(t). Examples of driving currents are
shown in Fig. 4. If the driving is sufficiently variable, this
is still equivalent to a CLT driving [6] and the locking is
preserved, as it is when the driving is sufficiently slowly
varying.

Arnold coding only fails in an intermediate range when
the modulation substantially interferes with the neuron’s
own firing frequency. In this case, ”broad” interspike in-
terval distributions are generated. Because of the strong
response and suppressed adaptation, this is the preferred
experimental situation, although from the point of view of
the working brain, it is probably as inadequate as it could
be.
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Figure 4: Even wildly varying driving d(t) a) of currents
generate locked interspike intervals b) if the driving is ap-
plied to both neurons, but scaled down for one of them by
a factor determining Ω (in our case: Ω ∼ 1/2). The same
behavior is obtained for slowly modulated driving currents.
Only when the driving current’s modulation is of the order
of the neurons own preferred frequency, the locking breaks
down. φ: phases at perturbations.

6. Is Hodgkin-Huxley good enough?

The H.-H. model is a rather simple neuron model that
disregards, e.g., the spatial aspects of the biological neu-
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rons. Therefore, the question is appropriate to what extent
the obtained results can be considered relevant. Moreover,
by its onset of oscillations via a Hopf bifurcation, the H.-
H. model is unable to generate interspike interval distri-
butions that come close to biological ones. From the bio-
logical point of view, the H.-H. model has one major ad-
vantage and one major shortcoming. The shortcoming is
that its variance on the interspike interval length is strictly
bounded by its onset frequency, due to its Hopf-type birth
process. Together with the refractory period, this limits the
variability of interspike intervals so much that it is impos-
sible to model realistic distributions that often even show
broad distributions of Lévy type. With the Morris-Lécar
model, however, this shortcoming can be removed. This
point seems to have been partially overlooked even in in-
vestigations that have this issue as the focus. The major
advantage of the H.-H. model is at the same time that it
starts at nonzero frequency. This yields a current-frequency
(I/F) relationship that has a relatively constant slope. This
property comes in support of a coding scheme that ideally
would have the frequency relationship Ω = f1/ f2 be di-
rectly transcribed into the equivalent relationship between
the driving currents I1, I2. The latter obviously is the case
if they are based on a linear I/F relationship.

To investigate whether these issues play a part in na-
ture, we repeated the previous experiments with the Morris-
Lécar neuron model and with detailed neuron models us-
ing the environment NEURON [10]. The results confirm
the validity of the coding scheme, by showing locking over
huge linear areas of the I1 × I2 parameter space. A cur-
vature that could be introduced by the nonlinearity of the
I/F-curve does not play a significant role. It is largest at
the onset (which generally can be considered as abrupt-
like) and in the saturation regime. In the latter, however,
further effects need to be taken into account as well, the
most relevant of which are counteracting this disturbance
(e.g., improved synaptic efficacy, leading to an increased
K). It is worthwhile noting that the Arnold tongues for the
detailed neuron model match extremely well with the one
obtained from biophysical measurements [6-7]. With these
neuron models, it is even possible to generate broad dis-
tributions as observed in nature, by locked states. This is
achieved by using a vastly-varying driving current at fixed
ratio for the two neurons, visiting in particular, areas of
low spiking frequencies. For an outside observer, without
the knowledge of the driving, it is impossible to infer that
the neurons are in the locked state.

We know that in the brain, frequency as well as spike-
time coding is used. For the latter, however, only ungeneric
models have been presented so far. The presented model
provides a framework that is not only based on a generic
phenomenon, it also combines the two coding aspects, fre-
quency and precise timing. How from this the increased
efficiency emerges that characterizes the brain will be the
focus of another contribution. This work was supported by
a grant from SNF.
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Figure 5: Emerging phases φ show that period-2 locked be-
havior persists over a huge range of driving currents I1, I2,
if the ratio I1/I2(∼ Ω) � 1/2 is maintained (from detailed
compartmental neuron modeling using NEURON).
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Birkhäuser Verlag, Basel (2005).

[2] A.L. Hodgkin and A.F. Huxley, “A quantitative de-
scription of membrane current and its application to
conduction and excitation in nerve”, J. Physiol. 117,
pp. 500–544 (1952).

[3] J. Rinzel and G.B. Ermentrout, “Analysis of neuronal
excitability and oscillations”, in C. Koch and I. Segev
eds., “Methods in neuronal modeling”, MIT Press,
Cambridge, MA. (1989).

[4] G.B. Ermentrout, “Type i membranes, phase reset-
ting curves, and synchrony”, Neural Comput. 8(5), pp.
979–1001 (1996).

[5] R. Stoop, K. Schindler, and L.A. Bunimovich, “Noise-
driven neocortical interaction: A simple generation
mechanism for complex neuron spiking”, Acta Biothe-
oretica 48, pp. 149–171 (2000).

[6] E. Hopf, “Abzweigung einer periodischen Lösung von
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