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Abstract— When strong multiplicative noise is
added to a dynamical system, we find two distinct
generic control regimes. In the regime of noisy sta-
ble behavior, the application of the control is able to
reduce noise, only if the underlying periodicity is cor-
rectly taken into account. In the chaotic regime, a shift
of the optimal control point away from the noise-free
control point is observed, scaling linearly with the
noise strength. The strongest control gain emerges
for unstable orbits of period-1, which suggests, that
natural noisy dynamical systems could preferably be
controlled on this orbit.

I. INTRODUCTION

Recently, ever more applications of dynamical sys-
tems approaches deal with biology, living systems and
related topics. These systems show amazing self-
organization, and efficiency, properties that we hope
to learn from, and to make use of for future technol-
ogy. A particular property of such systems is the pres-
ence of noise, on any level of information processing.
How is this phenomenon related to the high efficiency
properties of natural systems, and how does it affect
the controllability of these systems? In this contribu-
tion, we shall focus on the second question. We will
take the logistic parabola �����
	������� ����� ����� as
a simple model of a generator of nontrivial dynami-
cal behavior. Onto the logistic parabola, we will load
multiplicative noise, that for simplicity we choose
uniformly distributed over a finite interval (see Fig.
1). Other distributions (even with diverging cumu-
lants) could be considered and might be more realistic
in many applications. However, their explicit form
will have no particular impact on the message con-
veyed by this contribution. The size of the noise sam-
pling interval can be taken as a measure for the noise
strength.

The control problem that emerges in this context is
as follows: A noisy time series should be controlled
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Fig. 1. Noisy time series a) of a superstable period-4
( ��������� � �"! ), b) of a chaotic period-4 orbit ( �#���$��%� �%& ).

so as to remain in a, as small as possible, vicinity of
a noise-free system orbit, using as little correction as
possible. As a measure '�(*) of the efficiency of the
control, for a given noise level, the sum of absolute
differences between the noise-free system orbits, and
the noisy controlled system orbits, will be taken (in-
volving, for the results reported in this paper, 500 orbit
points). To control the noisy system, we will apply the
so-called hard limiter control approach (HLC).

II. CONTROL STRATEGIES

Elaborate control methods have recently been de-
veloped in the context of chaos control. Chaos is
composed of an infinite number of unstable periodic
orbits of diverging periodicities. In order to exploit
this reservoir of characteristic system behavior, meth-
ods to stabilize (or ”control”) such orbits using only
small control signals have been developed [1], [2], [3],
[4]. Practical applications often require that the or-
bits be quickly targeted and stabilized. For example,
the use of unstable orbits for signal transmission in
telecommunications would demand a very fast com-
putation of the control signal, as the signal frequency
is in the GHz-range. In biology, where control of low-
dimensional chaotic firing of neurons [5] is a potential
candidate for cortical information encoding, a very ef-
ficient control mechanism is required as well. This is



implied by a comparison between typical cortical re-
action and neuronal inter-firing times ( + �-,�,

ms vs.
+/. , ms). A second difficulty for the control in many
applications, is the large amount of strong short-time
fluctuations. Most control approaches, due to their in-
herent latency and sophisticated nature, cannot cope
with this problem. Recently, Corron et al. [6], [7]
introduced a new control approach (termed ”control
by simple limiters”) and suggested, that it could over-
come the limitations of the previous methods. The
general procedure can be summarized as follows: An
external load is added to the system, which limits the
phase-space that can be explored. As a result, or-
bits with points in the forbidden area are eliminated.
The authors also observed that the modified systems
tend to replace previously chaotic with periodic be-
havior. When the modified system is tuned in such
a way that the control mechanism is marginally ef-
fective, the controlled orbit runs in the close neigh-
borhood of an orbit of the uncontrolled system. Re-
cently, the control method was theoretically analyzed
and fully explained [8], [9], where an underlying 1-d
discrete flat-top map family embodies all properties to
be explained.

III. FLAT-TOPPED MAPS

Flat-topped maps are obtained by replacing the
peak region of the map by a horizontal straight line at
height 0 representing the limiter in the phase-space.
Fig. 2a shows the flat-top tent map with the bifurca-
tion diagram as a function of the natural control pa-
rameter 0 . It is observed that the controlled map un-
dergoes a period-doubling bifurcation cascade, lead-
ing to long, seemingly chaotic orbits. However, in this
system, there are no chaotic orbits: Each orbit will
eventually pass by the control segment, from where
on the orbit is periodic. Period-doubling cascades
are characterized by two constants, 1 and 2 [10].
The constant 1 asymptotically describes the scaling
of the fork opening by subsequent period doublings,
whereas 2 represents the scaling of the intervals of
period . � to those of period . ��34	 near the period-
doubling accumulation point, i.e. at the transition to
chaos. The observed period-doubling bifurcation cas-
cades are typical for flat-top maps (or, of the control
method) and differ in scaling from the Feigenbaum
case. The ratio of the bifurcation fork openings within
forks of the same periodicity now depends on the
derivative of the map, and is therefore non-universal.
A complete investigation of the scaling properties of
HLC should also contain an explanation of the large-

scale repetitive structures in the bifurcation diagrams
(see Fig. 2b), which we will call ”stars” (indicated by
the large circles) and ”windows” (the adjacent empty
bands). It is easy to see that the locations of the stars
are found by back-iterating �5�6.%798 . The asymptotic
scaling of the stars is therefore given by the deriva-
tive of the leftmost fixed-point of the map. The ap-
proximate center of the windows coincides with the
outermost maximum of the map : � (the ; -th iterate
of the map). Subsequent locations can therefore sim-
ilarly be found by back-iterating the neighborhood of
point �<� �

. This shows that the asymptotic scaling
of these structures is also determined by the derivative
of the leftmost fixed- point. As a consequence, both
scalings are non-universal.
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Fig. 2. a) Bifurcation diagram of the flat-topped tent map.
Broken line: inverted map. b) Relation between the = -
fold iterates of > and the scaling of the ”stars” (large
circles): Back-iterations of ?@�A!"B-C (see arrows) yield
successive locations of the stars. Their scaling is there-
fore determined by the derivative >EDGFH�JI . A similar ar-
gument applies for the size of the ”windows” (centers
indicated by small circles).

With the classical methods, unstable periodic or-
bits can only be controlled when the system is al-
ready in the vicinity of the target orbit. As the initial
transients can become very large, targeting algorithms
have been designed to speed up this process [11], [12].
HLC makes targeting algorithms unnecessary, as the
control-time problem is equivalent to strange repeller
escape (control is achieved, as soon as the orbit lands
on the flat top). As a consequence, the convergence
onto the selected orbit is exponential. This is corrob-
orated by the escape rate of the map, whose values
can be obtained from simulations, or via the cycle ex-
pansion method [13], [14]. As an example of the lat-
ter, at 0K�L.%798 the dynamical zeta function is given
by

� 79M$� �N�PO 	Q , and only the cycle at �R� ,
has

to be taken into account. We obtain an escape rate
of ST�VUXW � .%� , implying that for arbitrary initial con-
ditions, the probability to land on the period

�
-orbit

within Y iterations is Z[� ,]\_^ Y . Similarly obtained re-
sults coincide with those obtained from simulations.
To summarize: 1-d HLC systems exclusively exhibit



periodic motion, although period doublings are ob-
served. These period-doubling cascades are not of the
Feigenbaum type. In the control space, a fast scaling
2 34	 � ;
��+`. 3 Q�a emerges. Controlled orbits are true
orbits, in terms of the original system, only at bifur-
cation points of the controlled map. For generic 1-
parameter families of maps all bifurcation points are
regular, and isolated in a compact space. As a conse-
quence, their Lebesgue measure is zero.

IV. NUMERICAL RESULTS

As HLC can obviously be profitably applied for sta-
ble, and for unstable, noisy orbits alike, we may dis-
tinguish two control regimes: A) The regime of un-
derlying stable periodic behavior, B) The regime of
chaotic dynamics.

A. Regime of stable orbits

For our numerical investigations of the control of
noisy stable period-1 and period-2 fixed-points, we
chose the superstable orbits (by adjusting to b�c.
and d� �fe Y 	hg Q , respectively). For the noise-prone
orbits, we calculated the deviation to the noise-free
system, as a function of the noise, and of the limiter
position. For zero noise, the effect of the control ex-
pressed by means of the deviation '�(-) is a piecewise
linear function of the limiter position 0 . The function
increases as the limiter is posed ever further below the
function maximum, where the coefficient generally is
a function of the periodicity and of  . If its position
exceeds the function maximum, the limiter has no ef-
fect and the slope is zero (see Fig. 3 for period-1).
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Fig. 3. Dependence of i"jlk on the control point m (summa-
tion over 500 orbit points, period-1 orbit). a) A piece-
wise linear function with a minimum is obtained for
zero noise. b) At nonzero noise ( �#���n�o� � �"! ), the func-
tion becomes nonlinear, with a minimum at the optimal
noise-free control point).

The control of the noisy superstable period-1 is un-
problematic. For nonzero noise, the formerly piece-
wise linear function becomes nonlinear, with the min-
imum remaining at the optimal control point of the

noise-free system. The optimal control is thus ob-
tained at the optimal control point of the noise-free
system. No matter at what noise level, optimal use of
the control leads to an improvement, where in the in-
terval of noise prqhsut ,]\X�

, which we chose as the inter-
val of realistic noise strength, the deviation is a linear
function of the noise strength. The stronger the cor-
rections needed, the lower is 0 , the more concentrated
is the orbit position histogram on the control point.
This point, however, generally deviates from the asso-
ciated orbit point, which leads in spite to an increas-
ing deviation. Controlling on the superstable period-
2 yields a similar picture. One difference, however,
is that the amount of noise tolerable to maintain con-
trol (yielding a significantly reduced value of 'v(-) ), de-
creases considerably. Within the controllable region,
using the control, we were able to reduce the deviation
by a factor of

,]\ Y . For stable orbits, control can ben-
eficially be applied up to relatively large noise levels
(see Fig. 3 for p*qwsu� ,]\x,%y

). Above this level, control
is lost. This happens, when due to the noise, the order
among the different orbit points is changed.
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Fig. 4. Time series a) before and b) after control (super-
stable period-2 orbit, noise level �#���n�o� � �Jz ).

Under substantial noise, therefore only low-order
periodic orbits can be controlled. E.g., for period
four, already at a noise level p*qws|{ ,]\x,��

, interchange
of orbit points sets in. If no importance to the cor-
rect ordering of the cycle points is attached, and only
the distance individually to the closest cycle points
is measured, control beyond the threshold of orbit
point interchange may be beneficial. Interestingly, the
function 'v(-) � 0~}�p*qws � scales linearly with p*qws (identical
curves emerge, if 0 and '�(*) are rescaled by prqhs ). Most
importantly, however, is that the system is controlled
with reference to the natural state of the system. Con-
trolling on non-natural, artificial, periods, leads to dis-
astrous deviations. In this case, much energy is spent
on ”control friction”. Good control results are ob-
tained only when the correct periodicity is controlled
at the optimal control point of the noise-free system.
By means of the control, as a rule of thumb, the devi-
ation can be reduced by a factor of

,]\ Y .



B. Regime of chaotic orbits

For the chaotic regime, we focus on the fully devel-
oped parabola ( ���� ). Again, to control proper sys-
tem orbits, the control point must be chosen properly
(at the bifurcation points of Fig. 2a). The appropri-
ate location of 0 can be calculated from the renormal-
ization approach to flat-topped maps [8], or be found
experimentally. In the chaotic regime, without apply-
ing control, we are unable to remain on a periodic or-
bit. It is therefore impossible to express the control
efficacy as done above. For obtaining the period-1 or-
bit in the noise-free case, the limiter was adjusted at
0�� ,]\�� Y . In the presence of noise, in contrast to the
stable regime, the optimal control point moves away
from the noise-free control point, where the amount
of displacement is essentially a linear function of the
noise strength. Again, the deviation '�(-) was propor-
tional to the noise strength. For the unstable period-2
orbit, the noise-free control point is at 0�� ,]\_^9, � .
The displacement of the noisy optimal control point
with regard to the noise-free control point is again a
linear function of the noise strength. The same obser-
vation holds for the minimal deviation. The shift of
the control point spans over an interval of more than
2"0�� ,]\X�

, and is therefore of a size comparable to the
added noise (see Fig. 5).
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Fig. 5. Controlled unstable period-2 orbit in the chaotic
regime, where �#��� has been increased equidistantly. a)
Linear dependence of the optimal control point dis-
placement on the noise strength �#��� . b) Linear depen-
dence of iJjlk at the optimal control point, on the noise
strength.

Controlling period-4 yields an even stronger shift
from the optimal noise-free control point 0o� ,]\_^ .�Y .
The amount of sustainable noise, however, is again re-
duced if compared with period-2 (roughly, by a factor
of

,]\ Y ). Beyond a noise strength of p*qws�� ,]\x, � , the
orbit escapes control.

V. CONCLUSIONS

A correct identification of the underlying system
state is crucial. In the stable regime, the results of

the control depend very much on the correct identifi-
cation of the periodicity, where the noisy system can
be controlled at the highest noise-free orbit point. In
the chaotic regime, noise forces the optimal control
point to move away from the noise-free control point,
linearly scaling with the noise strength. Controlling at
this point, yields a '�(-) -error decrease by roughly one
fourth if compared with the one obtained at the noise-
free optimal point. Detailed investigations show that
the linear shift of the optimal control point, as a func-
tion of the noise strength, depends on the nature of
the noise. If positive noise is added, the effect van-
ishes. Although not particularly spectacular, the per-
formance improvements obtained by the application
of the control method in both regimes may be signifi-
cant in the context of biological signal processing.
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